K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

A B C D E H 5 3

a, Xét tam giác AEH và tam giác BDH 

^AHE = ^BHD ( đ.đ )

^AEH = ^BDH = 900

Vậy tam giác AEH ~ tam giác BDH ( g.g )

b, Vì tam giác AEH ~ tam giác BDH ( g.g )

\(\Rightarrow\frac{AH}{BH}=\frac{EH}{DH}\)( tỉ số đồng dạng ) \(\Rightarrow\frac{AH}{EH}=\frac{BH}{DH}\)( tỉ lệ thức )

Xét tam giác HAB và tam giác HED ta có : 

^AHB = ^EHD ( đ.đ )

\(\frac{AH}{EH}=\frac{BH}{DH}\)( cmt )

Vậy tam giác HAB ~ tam giác HED ( c.g.c )

\(\Rightarrow\frac{HA}{HE}=\frac{AB}{ED}\Rightarrow HA.ED=AB.HE\)

a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có 

\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)

Do đó: ΔAEH\(\sim\)ΔBDH(g-g)

6 tháng 5 2021

Mình chỉ biết làm mỗi câu d thôi bạn thông cảm nhé !!!

d) Vì BE vuông AC, CF vuông AB(gt)

Mà BE, CF cắt nhau tại H

=> H là trực tâm của tam giác ABC

Ta có Sbhc/Sabc = 1/2 x HD xBC/1/2 x AD x BC = HD/AD      (1)

Ta có Sahc/Sabc = 1/2 x HE x AC/1/2 x BE x AC = HE/BE      (2)

Ta có Sabh/Sabc = 1/2 x HF x AB/1/2 x CF x AB = HF/CF       (3)

Từ (1), (2), (3) => HD/AD + HE/BE + HF/CF = Sbhc/Sabc + Sahc/Sabc + Sabh/Sabc

                        =>  HD/AD + HE/BE + HF/CF = Sabc/Sabc

                        => HD/AD + HE/BE + HF/CF = 1 (Đpcm)

6 tháng 5 2021

câu c nè

Chứng minh tgCEB đồng dạng vs tgCDA (g.g)=>gócEBC= gócDAC 

Do đó : tg ADC đồng dạng với tam giác BDH=>AD/BD=DC/DH

=>BD/DH=AD/DC=>BD/DH=3/4(AD PYTAGO vào tg vuông ADC ta tính được DC=4)

vậy\(\frac{BD}{DH}=\frac{3}{4}\)

24 tháng 4 2022

c) -△AEF và △ABC có: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(△ABE∼△ACF), \(\widehat{BAC}\) chung.

\(\Rightarrow\)△AEF∼△ABC (c-g-c) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\).

-△MFB và △MEC có: \(\widehat{FMB}=\widehat{EMC}\) , \(\widehat{MFB}=\widehat{MEC}=90^0\)

\(\Rightarrow\)△MFB∼△MEC (g-g) \(\Rightarrow\dfrac{MF}{ME}=\dfrac{MB}{MC}\).

-△MEF và △MCB có: \(\dfrac{MF}{MB}=\dfrac{ME}{MC}\left(\dfrac{MF}{ME}=\dfrac{MB}{MC}\right),\widehat{EMF}=\widehat{CMB}\)

\(\Rightarrow\)△MEF∼△MCB (c-g-c) \(\Rightarrow\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\dfrac{AK}{AD}.\dfrac{AE}{AC}=\dfrac{S_{AKE}}{S_{ADC}}=\dfrac{S_{AFK}}{D_{ADB}}=\dfrac{S_{AKE}+S_{AFK}}{S_{ADC}+S_{ADB}}=\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\dfrac{MK}{MD}.\dfrac{AE}{AC}=\dfrac{S_{MEK}}{S_{MDC}}=\dfrac{S_{MFK}}{S_{MDB}}=\dfrac{S_{MEK}+S_{MFK}}{S_{MDC}+S_{MDB}}=\dfrac{S_{MEF}}{S_{MCB}}=\left(\dfrac{EF}{BC}\right)^2\)

\(\Rightarrow\dfrac{AK}{AD}=\dfrac{MK}{MD}\Rightarrow AK.MD=MK.AD\)

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F co

góc B chung

=>ΔBDA đồng dạng vói ΔBFC

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng vói ΔACB

c: Xét ΔAEH vuông tại E và ΔADC vuông tại D có

góc EAH chung

=>ΔAEH đồng dạng vói ΔADC

=>AD*AH=AE*AC

Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng vói ΔCFA

=>CH*CF=CE*CA

=>AH*AD+CH*CF=CA^2