Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
nên góc ABC=góc ACB
ΔBCA cân tại A
mà AH la trung tuyến
nên AH vuônggóc với BC
b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có
DM chung
MH=MC
Do đó: ΔDMH=ΔDMC
c: Xét ΔAHC có MD//AC
nên AD/DC=HM/MC=1
=>D là trung điểm của CA
Xét ΔCBA có CD/CA=CH/CB
nên HD//AB
a: BC=5
AH=2,4
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: DE=AH
c: Ta có: ADHE là hình chữ nhật
nên DE cắt AH tại trung điểm của mỗi đường
a) Ta có: Vì HD, HE vuông góc với AB,AC
Tam giác ABC vuông tại A
\(\Rightarrow\) góc CAD = góc HEC = góc ADH = 90 độ
\(\Rightarrow\) Tứ giác AEHD là hình chữ nhật
\(\Rightarrow\)DE = AH ( hai đường chéo bằng nhau)
b) Vì tứ giác AEHD là hình chữ nhật
Góc DHE= 90 độ ( AH là đường cao của tam giác ABC)
\(\Rightarrow\)Tứ giác AEHD là hình vuông
\(\Rightarrow\) EH = AD = EA = HD
* Vì HE vuông góc với AC
\(\Rightarrow\)Tam giác HEC, tam giác EAD là 2 tam giác vuông
Xét 2 tam giác vuông ECH và ADE có:
góc HEC = góc EAD = 90 độ
EH=AE ( chứng minh trên)
\(\Rightarrow\)tam giác ECH = tam giác ADE
\(\Rightarrow\)góc ECH = góc ADE hay góc ADE = góc ACB
a) Ta có: Vì HD, HE vuông góc với AB,AC
Tam giác ABC vuông tại A
\Rightarrow⇒ góc CAD = góc HEC = góc ADH = 90 độ
\Rightarrow⇒ Tứ giác AEHD là hình chữ nhật
\Rightarrow⇒DE = AH ( hai đường chéo bằng nhau)
b) Vì tứ giác AEHD là hình chữ nhật
Góc DHE= 90 độ ( AH là đường cao của tam giác ABC)
\Rightarrow⇒Tứ giác AEHD là hình vuông
\Rightarrow⇒ EH = AD = EA = HD
* Vì HE vuông góc với AC
\Rightarrow⇒Tam giác HEC, tam giác EAD là 2 tam giác vuông
Xét 2 tam giác vuông ECH và ADE có:
góc HEC = góc EAD = 90 độ
EH=AE ( chứng minh trên)
\Rightarrow⇒tam giác ECH = tam giác ADE
\Rightarrow⇒góc ECH = góc ADE hay góc ADE = góc ACB