Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét ΔABC có ME//AB
nên CE/CA=CM/CB=1/2
=>E là trung điểm của AC
Xét ΔCAB có MD//AC
nên MD/AC=BD/BA=BM/BC=1/2
=>D là trung điểm của BA
=>MD//CE và MD=CE
=>MCED là hình bình hành
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét tứ giác MHDE có
MH//DE
MD=HE
Do đó;MHDE là hình thang cân
a) Tứ giác \(AMDN\) có \(\widehat{A}=\widehat{M}=\widehat{N}=90^0\)
nên \(AMDN\) là hình chữ nhật
b) MK SỬA LẠI ĐỀ NHA: CM AEBD LÀ HÌNH THOI
\(\Delta ABC\)có \(DB=DC;\)\(DM\)// \(AC\)( cùng \(\perp AB\))
\(\Rightarrow\)\(MA=MB\)
Tứ giác \(AEBD\)có \(MA=MB;\)\(ME=MD\)
nên \(AEBD\)là hình bình hành
mà \(AB\perp ED\)
nên \(AEBD\)là hình thoi