Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEBN:
+ M là trung điểm của AB (gtt).
+ M là trung điểm của EN (N đối xứng E qua M).
=> Tứ giác AEBN là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).
=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Xét tam giác HEC và tam giác DEA:
+ EC = EA (E là trung điểm của AC).
+ \(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).
+ \(\widehat{HCE}=\widehat{DAE}\) (AD // HC).
=> Tam giác HEC = Tam giác DEA (c - g - c).
Xét tứ giác ADCH:
+ AD // HC (gt).
+ AD = HC (Tam giác HEC = Tam giác DEA).
=> Tứ giác ADCH là hình bình hành (dhnb).
Mà AD = CD (cmt).
=> Tứ giác ADCH là hình thoi (dhnb).
a: Xét ΔABC có
D là trung điểm của BC
E là trung điểm của AB
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//AC và \(DE=\dfrac{AC}{2}\)
Xét tứ giác AEDC có DE//AC
nên AEDC là hình thang
b: Ta có: DE//AC
mà AB\(\perp\)AC
nên DE\(\perp\)AB
Xét tứ giác DAFB có
E là trung điểm của đường chéo DF
E là trung điểm của đường chéo AB
Do đó: DAFB là hình bình hành
mà DF\(\perp\)AB
nên DAFB là hình thoi
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
góc BAC=90 độ
=>ABEC là hình chữ nhật
b: Xét ΔBOF và ΔEOM có
góc BOF=góc EOM
OB=OE
góc OBF=góc OEM
=>ΔBOF=ΔEOM
=>OF=OM
=>O là trung điểm của FM
Xét tứ giác EMBF có
O là trung điểm chung của EB và MF
EM=MB
=>EMBF là hình thoi