Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
Ta có : HB + HC = BC = 8 cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=2.8\Rightarrow AB=4cm\)
* Áp dụng hệ thức : \(AC^2=CH.BC=6.8\Rightarrow AC=4\sqrt{3}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Xét \(\Delta\)ABC có góc A=90 độ, AH là đường cao:
Theo tỉ số lượng giác giữa cạnh và góc trong tam giác vuông:
tan C =\(\dfrac{AB}{AC}=15\Rightarrow\)góc C \(\approx\) 86,186 độ
Theo hệ thức giữa cạnh và góc trong tam giác vuông:
AB=BC *sin C=34*sin 86,186=33,925 (cm)
AC=BC*cos C = 34* cos 86,186=2,262(cm)
Theo hệ thức 4 giữa cạnh và đường có trong tam giác vuông
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{\left(33,925\right)^2}+\dfrac{1}{\left(2,262\right)^2}\)
= \(\dfrac{1}{1150.905625}+\dfrac{1}{5.116644}=0.196\)
=> \(AH^2=\dfrac{1}{0.196}\approx5\Rightarrow AH\approx\sqrt{5}\left(cm\right)\)
Theo hệ thức 1 giữa cạnh và đường cao trong tam vuông:
\(AC^2=HC\cdot BC\Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{\left(2.262\right)^2}{34}\approx0.15\left(cm\right)\)
\(AB^2=BH\cdot BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(33,925\right)^2}{34}\approx33,88\left(cm\right)\)