Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AM/MB=AN/NC
nên MN//BC
b: Xét ΔABC có MN//BC
nên AM/AB=AN/AC(1)
Xét ΔABI có MK//BI
nên MK/BI=AM/AB(2)
Xét ΔACI có NK//CI
nên NK/IC=AN/AC(3)
Từ (1), (2) và (3) suy ra MK/BI=NK/CI
mà BI=CI
nên MK=NK
hay K là trung điểm của MN
a, Ta có AM/MB = AN/NC = 3/2 ⇒ MN//BC
b, Ta có MN//BC ⇒ MK//BI ⇒ MK/BI=AM/AB (Hệ quả đ/lí Talet) ⇒ MK=BI. AM/AB
C/m tương tự ta có NK=IC . AN/AC
mà theo câu a, AM/MB = AN/NC ⇒ NK=MK (ĐPCM)
a, Ta có :
\(\frac{AM}{MB}=\frac{3}{2},\frac{AN}{NC}=\frac{7,5}{5}=\frac{3}{2}\Rightarrow\frac{AM}{MB}=\frac{AN}{NC}\left(=\frac{3}{2}\right)\)
=> MN // BC ( định lí Talet đảo )
b, Ta có :
\(K\in MN;I\in BC\Rightarrow NK//CI;KM//BI\)
\(\Rightarrow\frac{NK}{CI}=\frac{AK}{AI},\frac{KM}{IB}=\frac{AK}{AI}\)
\(\Rightarrow\frac{NK}{CI}=\frac{KM}{IB}\left(=\frac{AK}{AI}\right)\)
Mà \(CI=IB\Rightarrow NK=KM\)
Vậy : K là trung điểm của NM
a) ta có:
\(\dfrac{AM}{MB}=\dfrac{3}{2},\dfrac{AN}{NC}=\dfrac{7,5}{5}=\dfrac{3}{2}\Rightarrow\dfrac{AM}{MB}=\dfrac{AN}{NC}\left(=\dfrac{3}{2}\right)\)
\(\Rightarrow\) MN//BC( định lí talet đảo)
b) ta có \(K\in MN,I\in BC\Rightarrow NK\)//CI, KM//BI
\(\Rightarrow\dfrac{NK}{CI}=\dfrac{AK}{AI},\dfrac{KM}{IB}=\dfrac{AK}{AI}\\ \Rightarrow\dfrac{NK}{CI}=\dfrac{KM}{IB}\left(=\dfrac{AK}{AI}\right)màCI=IB\Rightarrow NK=KM\)
Vậy K là trung điểm NM
a: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
b: Xét ΔABD có
MK//BD
nên \(\dfrac{MK}{BD}=\dfrac{AM}{AB}=\dfrac{5}{6}\left(1\right)\)
Xét ΔACD có
KN//DC
nên \(\dfrac{KN}{DC}=\dfrac{AN}{AC}=\dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{KM}{BD}=\dfrac{KN}{DC}\)
mà BD=DC
nên KM=KN
hay K là trung điểm của MN
a) ta có AM/AB =AN/AC =3/5 .Suy ra theo talet ta có MN//BC
b) ta có MK // BI nên tam giác AMK đồng dạng tam giác ABI . Suy ra AM /AB =MK /BI => MK = BI . AM/AB
Tương tự tam giác AKN đd tam giác AIC nên suy ra AN/AC =KN /IC . Suy ra NK = IC .AN /AC
mÀ IB = IC & AM/AB =AN/AC nên suy ra MK =NK (ĐPCM )
Bạn kẻ hình giúp mình
a) ta có:
AMMB=32,ANNC=7,55=32⇒AMMB=ANNC(=32)AMMB=32,ANNC=7,55=32⇒AMMB=ANNC(=32)
⇒⇒ MN//BC( định lí talet đảo)
b) ta có K∈MN,I∈BC⇒NKK∈MN,I∈BC⇒NK//CI, KM//BI
⇒NKCI=AKAI,KMIB=AKAI⇒NKCI=KMIB(=AKAI)màCI=IB⇒NK=KM⇒NKCI=AKAI,KMIB=AKAI⇒NKCI=KMIB(=AKAI)màCI=IB⇒NK=KM
Vậy K là trung điểm NM
a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)
AN+NC=AC(N nằm giữa A và C)
mà MB=NC(gt)
và AB=AC(ΔABC cân tại A)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác MNBC có MN//BC(cmt)
nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
c) Xét ΔAMN có
E là trung điểm của AM(gt)
F là trung điểm của AN(gt)
Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà MN//BC(cmt)
nên EF//BC(3)
Xét hình thang MNCB(MN//CB) có
H là trung điểm của MB(gt)
G là trung điểm của NC(gt)
Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)
Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)
Từ (3) và (4) suy ra EF//HG
Ta có: HG//BC(cmt)
nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{EHG}=\widehat{FGH}\)
Xét tứ giác EFGH có EF//HG(cmt)
nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)
Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)
nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Xét ΔABC có AM/MB=AN/NC
nên MN//BC