K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BAC=góc BCA

=>sđ cung BC=sđ cung BA

b: xy//DE
=>góc AED=góc yAE=góc ABC

c: góc AED=góc ABC

=>góc ABC+góc DEC=180 độ

=>BCDE nội tiếp

 

Xét ΔCDE và ΔCBA có

góc CDE=góc CBA

góc C chung

=>ΔCDE đồng dạng với ΔCBA

=>CD/CB=CE/CA

=>CD*CA=CB*CE

10 tháng 10 2018

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) ΔABC cân tại A

⇒ AB = AC

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các góc có đỉnh ở bên ngoài đường tròn nên ta có:

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D và E cùng nhìn BC dưới 1 góc bằng nhau

⇒ BCDE là tứ giác nội tiếp.

c. Tứ giác BCDE nội tiếp

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ BC // DE (hai góc đồng vị bằng nhau).

16 tháng 5 2017

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) ΔABC cân tại A

⇒ AB = AC

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các góc có đỉnh ở bên ngoài đường tròn nên ta có:

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D và E cùng nhìn BC dưới 1 góc bằng nhau

⇒ BCDE là tứ giác nội tiếp.

c. Tứ giác BCDE nội tiếp

Giải bài 15 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ BC // DE (hai góc đồng vị bằng nhau).

23 tháng 6 2021

a) Vì MA là tiếp tuyến \(\Rightarrow\angle MAB=\angle MCA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta MAB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAB=\angle MCA\\\angle AMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Rightarrow MA^2=MB.MC\)

b) Vì \(DE\parallel AM\) và \(AM\bot AO\) (tiếp tuyến) \(\Rightarrow DE\bot AO\)

\(\Rightarrow\angle OAD+\angle ADE=90\)

Ta có: \(\angle OAD=\dfrac{180-\angle AOC}{2}\) (\(\Delta OAC\) cân tại O) \(=90-\dfrac{1}{2}\angle AOC\)

\(=90-\angle ABC\)

\(\Rightarrow\angle ADE=\angle ABC\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle BEC=\angle BDC=90\)

\(\Rightarrow\) CE là đường cao

c) Vì N là điểm chính giữa cung BC \(\Rightarrow\angle BAN=\angle CAN\)

\(\Rightarrow AN\) là phân giác

Ta có: AI là phân giác \(\angle BAD\Rightarrow\dfrac{IB}{ID}=\dfrac{AB}{AD}\left(1\right)\)

AK là phân giác \(\angle CAE\Rightarrow\dfrac{KC}{KE}=\dfrac{AC}{AE}\left(2\right)\)

Xét \(\Delta DAB\) và \(\Delta EAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AEC=\angle ADB=90\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta DAB\sim\Delta EAC\left(g-g\right)\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AE}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\dfrac{IB}{ID}=\dfrac{KC}{KE}\)

Theo đề: \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\Rightarrow\left(\dfrac{AB}{AD}\right)^2=2\dfrac{AB}{AD}\Rightarrow\dfrac{AB}{AD}=2\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{1}{2}\Rightarrow cosBAC=\dfrac{1}{2}\Rightarrow\angle BAC=60\)

Vậy tam giác ABC có \(\angle BAC=60\) thì \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\)

 

 

23 tháng 6 2021

thank :33333