Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (O) có
ΔABC nội tiếp đường tròn(gt)
nên O là giao điểm ba đường trung trực của ΔABC
hay AO là đường trung trực của BC
⇒AO⊥BC
Ta có: AO⊥BC(cmt)
AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))
Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)
2) Xét ΔADE và ΔCDB có
\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)
DA=DC(D là trung điểm của AC)
\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)
Do đó: ΔADE=ΔCDB(c-g-c)
⇒AE=CB(hai cạnh tương ứng)
Xét tứ giác ABCE có
AE//CB(cmt)
AE=CB(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a, Theo t/c tiếp tuyến của đường tròn
EA = EC
FC = FB
=> EC + CF = EA + BF
=> EF = AE + BF
b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)
=> \(\Delta\)ABC vuông tại C
=> AC \(\perp\)BC
Xét \(\Delta\)DAB vuông tại A có AC là đường cao
=> \(AD^2=DC.DB\)(Hệ thức lượng)
c,Chưa ra, mai nghĩ ra thì giải cho ^^
Trên nửa mặt phẳng bờ ME chứa S, vẽ tiếp tuyến Ex của đường tròn ngoại tiếp ΔMEF
=>góc SFE=góc MEx
=>góc MES=góc MEx
=>SE trùg với Sx
=>SE là tiếp tuyến của đường tròn ngoại tiếp ΔMEF
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC
Vậy nên AE + BF = EC + CF = EF
b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:
\(DA^2=DC.DB\)
c) Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)
Lại có AB = 2OB; AC = 2AH.
Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)
Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )
Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)
Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)
Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)
\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)
\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)
d) Từ A kẻ AJ song song với BD cắt BF tại J.
Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.
Vậy ta có D, O , J thẳng hàng.
Xét tam giác AFJ có \(AB\perp FJ\)
\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)
Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\) (1)
Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.
Vậy thì \(AM\perp IO\) (2)
Từ (1) và (2) suy ra A, M , F thẳng hàng.
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)