Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P là trung điểm của BE. Từ P kẻ 1 tia vuông góc với BE cắt đoạn AB tại Q.
Xét tam giác BEM: ^BME=900, P là trung điểm của BE => PM=PB (1)
Ta tính được ^QBP = ^ABC - ^EBC = 750-300 = 450
Mà PQ vuông góc PB => Tam giác BPQ vuông cân tại P=> BP=PQ (2)
Từ (1) và (2) => PM=PQ => Tam giác PQM cân tại P
Dễ thấy ^MPE=600 => ^QPM=^QPE+^MPE = 900+600=1500
=> ^PQM= (1800 - ^QPM)/2 = 150
=> ^BQM= ^PQM + ^BQP = 150+450 = 600
Xét tam giác ABC: ^ABC=750; ^ACB=450 => ^BAC=600
Từ đó ta có: ^BQM=^BAC. Mà 2 góc này so le trg => MQ // AC
Lại có M là trung điểm của BC => Q là trung điểm của AC
=> PQ là đường trung bình của tam giác ABE => PQ//AE
Do PQ vuông góc BE => AE vuông góc BE (Quan hệ //, vuông góc)
=> ^AEB=900 (đpcm).
a: ΔABC cân tại A
mà AM là trung tuyến
nen AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(1)
c: EB=EC
nên E nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,E thẳng hàng
haizzz!câu hình của đề trường tớ:3
CÂU d kẻ điểm phụ +)Trên tia đối của HM lấy điểm P sao cho HM=HP
Gọi giao điểm của EB với AC là G,với DC là Q
P/S:gần đi hok rồi.tối về làm nốt cho:3
câu c
Ta có:\(\widehat{EAD}=\widehat{EAC}+\widehat{CAD}=90^0+\widehat{CAD}=90^0+90^0-\widehat{BAC}=180^0-\widehat{BAC}\)
Mặt khác \(\widehat{BAC}+\widehat{ACI}=180^0\Rightarrow\widehat{ACI}=180^0-\widehat{BAC}\)
\(\Rightarrow\widehat{ACI}=\widehat{EAD}\)
Xét \(\Delta AIC\&\Delta AED:\hept{\begin{cases}CI=AD\\\widehat{ACI}=\widehat{AED}\\AC=AE\end{cases}\Rightarrow\Delta AIC=\Delta AED\left(c.g.c\right)}\)
\(\Rightarrow\widehat{AED}=\widehat{CAI}\)
Ta có:\(\widehat{CAI}+\widehat{EAI}=90^0\Rightarrow\widehat{AED}+\widehat{EAI}=90^0\RightarrowĐPCM\)