Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D E 1 1
Giải:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( tổng 3 góc của \(\Delta ABC\) )
\(\Rightarrow\widehat{B}+\widehat{C}=120^o\) ( do \(\widehat{A}=60^o\) )
\(\Rightarrow\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=\frac{1}{2}120^o\)
\(\Rightarrow\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}=60^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=60^o\)
Xét \(\Delta BIC\) có: \(\widehat{BIC}+\widehat{B_1}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{BIC}+60^o=180^o\)
\(\Rightarrow\widehat{BIC}=120^o\)
Vậy \(\widehat{BIC}=120^o\)
đây có phải là bài thi vio toán bằng tiếng anh cấp trg ko bn
\(\widehat{ABC}+\widehat{ACB}=180-80=100\)
\(=>\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100}{2}=50\)
\(=>\widehat{BIC}=180-\left(\widehat{IBC}+\widehat{ICB}\right)=180-50=130\)
okey nhé bợn
a: \(\widehat{IBC}+\widehat{ICB}=180^0-120^0=60^0\)
=>\(\widehat{ABC}+\widehat{ACB}=120^0\)
hay \(\widehat{A}=60^0\)
b: \(\widehat{IBC}+\widehat{ICB}=180^0-\alpha\)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=360^0-2\cdot\alpha\)
\(\Leftrightarrow\widehat{BAC}=180^0-360^0+2\alpha=2\alpha-180^0\)
A B C #Hoàng Sơn I 1 2 1 2
Vì tổng 3 góc trong tam giác luôn là 180o
=> \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\) mà \(\widehat{A}=78^o\)
=> \(\widehat{ABC}+\widehat{ACB}=180^o-78^o=102^o\)
Lại có tổng 2 góc B2 và C2 là :
\(\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{102^o}{2}=51^o\)
Vì tổng 3 góc trong tam giác luôn bằng 180o
=> B2 + C2 + \(\widehat{BIC}\)- 180o
Mà B2 + C2 = 51o
=> BIC = 180o - 51o = 129o
Bạn tự vẽ hình nhé
Ta có : góc BAC = 78
---> ABC + ACB = 180 - 78 = 102
---> 2.CBI + 2.BCI = 102
---> CBI + BCI = 51
---> BIC = 180 - 51 = 129
xin tiick
a: Ta có: ˆABD=ˆBAMABD^=BAM^
ˆDBC=ˆAMBDBC^=AMB^
mà ˆABD=ˆDBCABD^=DBC^
nên ˆBAM=ˆAMB
Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)
Trong tam giác BIC có ∠(BIC) + ∠(IBC) + ∠(ICB) = 180o ⇒ (IBC) + (ICB) = 60o
∠(ABC) + ∠(ACB) = 2∠(IBC) + 2∠(ICB) = 2(∠(IBC) + ∠(ICB) ) = 2.60o = 120o
Có ∠A = 180o - 120o = 60o. Chọn A