Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình ná
trong tam giác AHC có
AK=KH
HN=CN
=> KN là đtb=> KN//AC và KN=AC/2
tương tự, ta có MK//AB và MK=AB/2
MN//BC và MN=BC/2
Xét tam giác ABC và tam giác KMN có
KN/AC=MN/BC=MK/AB(=1/2) (cũng là tỉ số đồng dạng của 2 tam giác)
=> tam giác ABC đồng dạng với tam giác KMN(ccc)
* Trong △ AHB, ta có:
K trung điểm của AH (gt)
M trung điểm của BH (gt)
Suy ra KM là đường trung bình của tam giác AHB.
Suy ra: KM = 1/2 AB (tính chất đường trung bình của tam giác)
Suy ra: (1)
* Trong △ AHC, ta có:
K trung điểm của AH (gt)
N trung điếm của CH (gt)
Suy ra KN là đường trung bình của tam giác AHC.
Suy ra: KN =1/2 AC (tính chất đường trung bình của tam giác)
Suy ra: (2)
* Trong △ BHC, ta có:
M trung điểm của BH (gt)
N trung điểm của CH (gt)
Suy ra MN là đường trung bình của tam giác BHC.
Suy ra: MN = 1/2 BC (tính chất đường trung bình của tam giác)
Suy ra: (3)
Từ (1), (2) và (3) suy ra:
Vậy △ KMN đồng dạng △ ABC (c.c.c)
Ta có:
Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,
ghghhggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{BAD}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)