K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.

5 tháng 1 2021

đề bài sai à

câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à

21 tháng 8 2017

nhầm \(\frac{1}{2}\)nha

23 tháng 8 2017

A C B E h t K

23 tháng 8 2017

ta có:ABC là góc ngoài của tg AEB

         A2 là góc ngoài của tg AEC

=> ABC = A4 + E

     A2 = C+ E

NÊN : ABC = A2 + E

   => ABC = C + E + E 

   => ABC - C = 2E

...... TỰ LÀM TIẾP NHA BN 

   

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
5 tháng 3 2020

MỌI NGÙI ƠI GUISP MIK VS , CẦN GẤP 

30 tháng 9 2018

B A M C K

a. Vì K là trung điểm của AC

=> AK = KC 

Từ \(\Delta BAK\)và \(\Delta BKC\), TA CÓ:

BK:  cạnh chung 

AK = KC 

AB = BC

\(\Rightarrow\Delta BAK=\Delta BKC\)( C.C.C ) 

B , Ta có : \(\widehat{AKB}\)VÀ \(\widehat{CKB}\)KỀ BÙ 

Mà \(\widehat{BKA}\)\(=BKC\)

=> BK \(\perp\)AC

c , tự làm