K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Tự vẽ hình nha ! :v

a) Xét tam giác ABK có :

BH là đường cao của AK

Đồng thời cũng là đường trung tuyến của AK

=> \(\Delta ABK\) cân tại B 

=> \(\widehat{BAK}=\widehat{BKA}\)

b) Xét \(\Delta ABM\)\(\Delta DCM\) (theo trường hopwjc cạnh - góc - cạnh)

=> AB = CD

Mà AB = BK

=> BK = CD

c) Sửa : Chứng minh KD vuông góc với AK

Nối C với D

Xét tam giác AKD có :

HM cắt AK tại trung điểm H

HM cắt AD tại trung điểm M

=> HM là đường trung trực của tam giác AKD

=> HM // CD

Mà HM vuông góc với AK

=> KD vuông góc với AK

Triệu hồi các cao nhân giải giúp mình câu d nhé! Mình không cần mấy câu kia nhưng mình vẫn ghi ra để làm nền làm câu d. Gíup mình nha mình phải ôn thi học kỳ, cám ơn mọi người trước nhé. Chúc buổi tối vui vẻ! :)) ^^. Nếu không các bạn cũng có thể ib mình qua facebook: https://www.facebook.com/hoang.anh.04032003 mình sẵn sàng rep nhé Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi I là trung điểm...
Đọc tiếp

Triệu hồi các cao nhân giải giúp mình câu d nhé! Mình không cần mấy câu kia nhưng mình vẫn ghi ra để làm nền làm câu d. Gíup mình nha mình phải ôn thi học kỳ, cám ơn mọi người trước nhé. Chúc buổi tối vui vẻ! :)) ^^. Nếu không các bạn cũng có thể ib mình qua facebook: https://www.facebook.com/hoang.anh.04032003 mình sẵn sàng rep nhé 

Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH. Gọi I là trung điểm của HC, K là điểm đối xứng với A qua I

a) Chứng minh: AHKC là hình bình hành

b)Từ H kẻ HM vuông góc với AB (M thuộc AB), kẻ HN vuông góc với AC (N thuộc AC). Gọi O là giao điểm của AH và MN. Chứng minh tứ giác AHMN là hình chữ nhật và góc OAN = góc ONA

c) chứng minh tứ giác NCKM là hình thang cân

d) Gọi D là giao điểm của CO và AK. Chứng minh AK= 3.AD

 

0
27 tháng 1 2022

a) - Ta có: SABCD=AH.BC=AK.AB.

=>\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\)

- Ta có: \(\widehat{ABC}+\widehat{BAD}=180^0\) (AD//BC).

=>\(\widehat{ABC}+\widehat{BAH}+\widehat{HAK}+\widehat{KAD}=180^0\)

=>\(90^0+\widehat{HAK}+\widehat{KAD}=180^0\)

=>\(\widehat{HAK}+\widehat{KAD}=90^0\) mà \(\widehat{KAD}+\widehat{ADK}=90^0\) (tam giác ADK vuông tại K) nên \(\widehat{HAK}=\widehat{ADK}\) mà \(\widehat{ADK}=\widehat{ABC}\) (ABCD là hình bình hành) nên\(\widehat{HAK}=\widehat{ABC}\)

- Xét tam giác AKH và tam giác BCA có:

\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\) (cmt)

\(\widehat{HAK}=\widehat{ABC}\) (cmt)

=> Tam giác AKH ∼ Tam giác BCA (c-g-c).

b) - Ta có: Tam giác AKH ∼ Tam giác BCA (cmt) nên:

\(\widehat{AKH}=\widehat{ACB}=40^0\) (2 góc tương ứng)

 

4 tháng 5 2021

cau co cau tra loi chx