Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Xét tam giác AMB và tam giác NMC có:
AM = NM (gt)
AMB = NMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác NMC (c.g.c)
Xét tam giác AMC và tam giác NMB có:
AM = NM (gt)
AMC = NMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC = Tam giác NMB (c.g.c)
2.
Xét tam giác AME và tam giác BMC có:
AM = BM (M là trung điểm của AB)
AME = BMC (2 góc đối đỉnh)
ME = MC (gt)
=> Tam giác AME = Tam giác BMC (c.g.c)
=> AEM = BCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AE // BC
Xét tam giác ANF và tam giác CNB có:
AN = CN (N là trung điểm của AC)
ANF = CNB (2 góc đối đỉnh)
NF = NB (gt)
=> Tam giác ANF = Tam giác CNB (c.g.c)
=> AF = CB (2 cạnh tương ứng)
Có : NB = NC
=> tam giác NBC cân tại N
Có : NM vừa là đường trung tuyến vừa là đường cao
=> NM vuông góc với BC
Xét tam giác NMB và tam giác NMC có:
NM = NC
Cạnh NM chung
Góc NMB = NMC = 900
=> tám giác NMB = NMC (cạnh huyền cạnh góc vuông) (đpcm)
xét tam giác NMB và tam giác NMC ta có:
NB=NC(gt)
BM=MC(gt)
MN:cạnh chung
kết hợp ba cái trên . Suy ra tam giác NMB=tam giác NMC
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔMAD=ΔMCB
=>\(\widehat{MAD}=\widehat{MCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
c: Xét ΔNAK và ΔNBC có
NA=NB
\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)
NK=NC
Do đó; ΔNAK=ΔNBC
=>\(\widehat{NAK}=\widehat{NBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AK//BC
Ta có: AD//BC
AK//BC
AK,AD có điểm chung là A
Do đó: D,A,K thẳng hàng
Hình bạn tự vẽ đc chớ nhỉ
a) Xét \(\Delta\) MNB và \(\Delta\) MNC có
MN : cạnh chung
MB = MC ( do M là trung điểm của BC )
NB = NC ( gt)
=>\(\Delta\) MNB = \(\Delta\)MNC ( c-c-c)
b) Theo câu a ta có
\(\Delta\) MNB = \(\Delta\)MNC
=> \(\widehat{NMB}=\widehat{NMC}\) ( 2 góc tương ứng ) (1)
Mà \(\widehat{NMB}+\widehat{NMC}=180^o\) ( 2 góc kề bù ) (2)
Từ (1) và (2) => \(\widehat{NMB}=\widehat{NMC}=\frac{180^o}{2}=90^o\) (*1)
Lại có MN cắt BC tại M (*2)
Từ (*1) và (*2) => \(MN\perp BC\) tại M
@@ Học tốt
Takigawa Miu_
a) Xét tam giác AMB và tam giác AMC có:
+ AB = AC (gt).
+ AM chung.
+ ^BAM = ^CAM (AM là phân giác ^BAC).
=> Tam giác AMB = Tam giác AMC (c - g - c).
b) Xét tam giác ABC cân tại A có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AD là phân giác ^BAC (gt).
=> AD là đường trung tuyến (Tính chất các đường trong tam giác cân).
=> D là trung điểm của BC.
Xét tam giác MBD và tam giác MCD có:
+ MB = MC (do tam giác AMB = tam giác AMC).
+ MD chung.
+ BD = CD (do D là trung điểm của BC).
=> Tam giác MBD = Tam giác MCD (c - c - c).
a: Sửa đề: ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
MB=MC
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
c: AB=AC
MB=MC
Do đó: AM là đường trung trực của BC
=>AM\(\perp\)BC
a, Xét tam giác AMB và tam giác AMC ta có :
MA _ chung
BA = AC ( gt )
MB = MC ( gt )
Vậy tam giác AMB = tam giác AMC ( c.c.c )
b, Xét tam giác NMB và tam giác NMC ta có :
MN _ chung
NB = NC ( N là trung điểm BC )
BM = MC ( gt )
Vậy tam giác NMB = tam giác NMC ( c.c.c )
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có
AM chung
MB = MC ( giả thiết )
AB = AC ( giả thiết )
Nên \(\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) Xét \(\Delta NMB\) và \(\Delta NMC\) có
NM chung
NB = NC ( vì N là trung điểm của BC )
MB = MC ( giả thiết )
Nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)