K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Tam giác ABC có vuông ko vậy bạn ?!?

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Áp dụng định lý Pitago cho:

Tam giác $ABH$ vuông tại $H$:

$BH=\sqrt{AB^2-AH^2}=\sqrt{25^2-24^2}=7$

Tam giác $ACH$ vuông tại $H$:

$CH=\sqrt{AC^2-AH^2}=\sqrt{26^2-24^2}=10$

Do đó:

$BC=BH+CH=7+10=17$

24 tháng 2 2020

Xét tam giác ABH có AH^2+BH^2=AB^2

AB^2-AH^2=BH^2 <=> 625-576=49=BH^2

<=> BH=7

tương tự tính ra CH=10

BC=7+10=17

tích cho mk nha

20 tháng 1 2021

sai rồi :(((

24 tháng 1 2016

áp dụng các định lý bạn nhé

14 tháng 3 2020

ssssssssssssssssssssssssssssssssssssssssssssssssss

20 tháng 1 2021

hehenguuuu

 

 

 

28 tháng 4 2016

a) xét tam giac ABH và tam giac ADH ta có

AH=AH (canh chung)

BH=HD(gt)

goc AHB= góc AHD (=90)

-> tam giac ABH= tam giac ADH (c-g-c)

-> AB=AD (2 cạnh tương ứng)

-> tam giac ADB cân tại A

b)Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( định lý pitago)

152=122+ BH2

BH2=152-122

BH2=81

BH=9

Xét tam giác AHC vuông tại H ta có

AC2=AH2+HC2 ( định lý pitago)

AC2=122+162

AC2=400

AC=20

c) ta có BC= BH+HC=9+16=25

Xét tam giác ABC ta có

BC2=252=625

AB2+AC2=152+202=625

-> BC2=AB2+AC2 (=625)

-> tam giac ABC vuông tại A (định lý pitago đảo)

d)xét tam giác ABH và tam giác EDH ta có

BH=HD (gt)

AH=HE(gt)

góc BHA= góc DHE (=90)

-> tam giác ABH= tam giac EDH (c-g-c)

-> góc BAH= góc DEH (2 góc tương ứng)

mà 2 góc nằm ở vị trí so le trong 

nên AB// ED

lại có AB vuông góc AC ( tam giác ABC vuông tại A)

-> ED vuông góc AC

28 tháng 4 2016

mày ngu như chó

11 tháng 5 2022

a, Xét Δ ABC, có :

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)

=> \(3^2+4^2=BC^2\)

=> \(25=BC^2\)

=> BC = 5 (cm)

Xét Δ ABC vuông tại A, theo hệ thức lượng có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)

=> AH = 2,4 cm

b, Xét Δ ABD, có :

HD = HB (gt)

AH là đường cao

=> Δ ABD cân

17 tháng 5 2022

lol

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là tia phân giác của góc BAC

=>HB=HC và góc BAH=góc CAH

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có 
AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE và HD=HE

hay ΔHED cân tại H