Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác HFB và tam giác HEC
^BHF = ^CHE ( đối đỉnh )
^HFB = ^HEC = 900
Vậy tam giác HFB ~ tam giác HEC ( g.g ) (1)
\(\Rightarrow\frac{HB}{HC}=\frac{HF}{HE}\)( tỉ số đồng dạng ) \(\Rightarrow HB.HE=HF.HC\)
b, Xét tam giác HFB và tam giác AEB ta có :
^B _ chung
^HFB = ^AEB = 900
Vậy tam giác HFB ~ tam giác AEB (2)
Từ (1) ; (2) suy ra : tam giác AEB ~ tam giác HEC
\(\Rightarrow\frac{AE}{HE}=\frac{EB}{EC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.EC=EB.HE\)
a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có
\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHFA~ΔHDC
=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)
=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)
c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
nên AFHE là tứ giác nội tiếp
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)
mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)
nên \(\widehat{EFH}=\widehat{DFH}\)
=>FH là phân giác của góc EFD
Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EH là phân giác của góc FED
Xét ΔFED có
EH,FH là các đường phân giác
Do đó: H là giao điểm của ba đường phân giác trong ΔFED
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BE\cdot BH\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CF\)
\(BH\cdot BE+CH\cdot CF\)
\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)
a)Xét tam giác ABE và tam giác ACF có:
\(\widehat{AFC}=\widehat{AEB}\)
\(\widehat{A}\) chung
=> tam giác ABE và tam giác ACF đồng dạng
\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)
đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
góc FBH chung
=>ΔBFH đồng dạng với ΔBEA
=>BF/BE=BH/BA
=>BF*BA=BH*BE
d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có
góc ECH chung
=>ΔCEH đồng dạng với ΔCFA
=>CE/CF=CH/CA
=>CE*CA=CF*CH
a, ta có √(92+122)=15 nên theo định lý đảo của định lý pitago => ∠BAC=90 độ
Xét △ADB và △CAB có:
∠BAC=∠BDA(=90 độ), ∠ACB chung => △ADB ∼ △CAB (g.g) (1)
b, BE là đường phân giác của △ABC => \(\dfrac{AB}{AE}=\dfrac{BC}{EC}\)
Gọi AE= x (cm) => EC=12-x (cm)
Ta có: \(\dfrac{9}{x}=\dfrac{15}{12-x}\)=> 108-9x=15x =>108=24x => x=4,5
Vậy EA=4,5 cm, EC=12-4,5=7,5 cm
c, Xét △CAB và △CDA có:
∠BCD chung, ∠ADC=∠BAC(=90 độ) => △CAB ∼ △CDA (g.g) (2)
Từ (1),(2) => △ADB ∼ △CDA (T/c bắc cầu)
=> \(\dfrac{AD}{CD}=\dfrac{DB}{AD}\) => AD2=BD.DC
d, SABC=\(\dfrac{1}{2}.AB.AC\)=\(\dfrac{1}{2}AD.BC\)
=> AB.AC=AD.BC => AD = \(\dfrac{9.12}{15}\)=7,2 cm
Áp dụng định lí Pitago vào △ADC vuông tại D:
AC2=AD2+DC2 => DC=√[122-(7,2)2]=9,6 cm
=> BD=BC-DC=15-9,6=5,4 cm
BI là đường phân giác của △ABD => \(\dfrac{AB}{AI}=\dfrac{BD}{DI}\)
Gọi ID=y (cm) => AI=7,2-y (cm)
Ta có: \(\dfrac{9}{7,2-y}=\dfrac{5,4}{y}\)=> 9y=38,88-5,4y => 14,4y=38,88 => y = 2,7
Nên ID=2,7 cm
tự vẽ hình nha bạn
đầu tiên, c m tam giác AEF đồng dạng với tam giác ABC (c.g.c)
suy ra góc AEF=gócABC(1)
sau đó,cm tam giác BEC đồng dạng với tam giác ADC(c.g.c)
suy ra góc ABC=GÓC DEC(2)
TỪ (1);(2) SUY ra góc DEC=góc AEF
MÀ góc AEF=90-góc FEB
góc DEC=90-góc BED
SUY RA FEB=BED
suy ra EB là phân giác FED
HÃY KẾT BẠN VỚI MINK NHÉ
a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB∼ΔHEC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HB\cdot HE=HC\cdot HF\)(đpcm)