Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét tam giác HAI vuông tại H và tam giác KAI vuông tại K:
A1 = A2 (AI là tia phân giác của BAC)
AI là cạnh chung
=> Tam giác HAI = Tam giác KAI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> Tam giác IHK cân tại I
b.
AH = AK (Tam giác HAI = Tam giác KAI)
=> Tam giác AHK cân tại A
=> AHK = \(\frac{180-HAK}{2}\)
mà ABC = \(\frac{180-BAC}{2}\) (Tam giác ABC cân tại A)
=> AHK = ABC mà 2 góc nằm ở vị trí đồng vị
=> HK // BC
c. Gọi M là giao điểm của AI và HK
Xét tam giác AHM và tam giác AKM có:
AH = AK (Tam giác AHI = Tam giác AKI)
A1 = A2 (AI là tia phân giác của BAC)
AM là cạnh chung
=> Tam giác AHM = Tam giác AKM (c.g.c)
=> AMH = AMK (2 góc tương ứng)
mà AMH + AMK = 180 (2 góc kề bù)
=> AMH = AMK = 90
=> AI _I_ HK
a)tự cm tam giác AHI=AKI=> HI=KI=>TAM GIÁC IHK CÂN
b) dễ wa bạn có thể cm
bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:
nếu là vuông tại A thì có:
a.Xét tam giác ABC vuông tại A:
BC2=AB2+AC2(định lí pytago)
hay BC2=62+82
BC2=36+64
BC2= \(\sqrt{100}\)
BC=10(cm)
vậy BC=10cm
Xét ΔABC và ΔACM có:
AB=AM(gt)
AC chung
^CAB=^CAM=90o
=>ΔABC=ΔACM(trường hợp gì tự biết) :)
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:
a) Chứng minh tam giác AIB = tam giác AIC:
Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.b) Chứng minh AI là tia phân giác của góc BAC:
Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.c) Chứng minh IA là tia phân giác của góc HIK:
Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAIH=ΔAIK
=>\(\widehat{HIA}=\widehat{KIA}\)
=>IA là phân giác của \(\widehat{HIK}\)