K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.

Xét tam giác HAI vuông tại H và tam giác KAI vuông tại K:

A1 = A2 (AI là tia phân giác của BAC)

AI là cạnh chung

=> Tam giác HAI = Tam giác KAI (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> Tam giác IHK cân tại I

b.

AH = AK (Tam giác HAI = Tam giác KAI)

=> Tam giác AHK cân tại A

=> AHK = \(\frac{180-HAK}{2}\) 

mà ABC = \(\frac{180-BAC}{2}\) (Tam giác ABC cân tại A)

=> AHK = ABC mà 2 góc nằm ở vị trí đồng vị

=> HK // BC

c. Gọi M là giao điểm của AI và HK

Xét tam giác AHM và tam giác AKM có:

AH = AK (Tam giác AHI = Tam giác AKI)

A1 = A2 (AI là tia phân giác của BAC)

AM là cạnh chung

=> Tam giác AHM = Tam giác AKM (c.g.c)

=> AMH = AMK (2 góc tương ứng)

mà AMH + AMK = 180 (2 góc kề bù)

=> AMH = AMK = 90

=> AI _I_ HK

18 tháng 4 2016

a)tự cm tam giác AHI=AKI=> HI=KI=>TAM GIÁC IHK CÂN

b) dễ wa bạn có thể cm

8 tháng 5 2022

bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:

 

8 tháng 5 2022

nếu là vuông tại A thì có:

a.Xét tam giác ABC vuông tại A:

BC2=AB2+AC2(định lí pytago)

hay   BC2=62+82

        BC2=36+64

        BC2= \(\sqrt{100}\)

        BC=10(cm)

vậy BC=10cm

Xét ΔABC và ΔACM có:

AB=AM(gt)

AC chung

^CAB=^CAM=90o

=>ΔABC=ΔACM(trường hợp gì tự biết)   :)

 

8 tháng 5 2022

Giúp với tớ cần gấp

 

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

1 tháng 12 2023

Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:

a) Chứng minh tam giác AIB = tam giác AIC:

Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.

b) Chứng minh AI là tia phân giác của góc BAC:

Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.

c) Chứng minh IA là tia phân giác của góc HIK:

Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAIH=ΔAIK

=>\(\widehat{HIA}=\widehat{KIA}\)

=>IA là phân giác của \(\widehat{HIK}\)

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0