Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAGM và ΔCKM có
MA=MC
\(\widehat{AMG}=\widehat{CMK}\)
MG=MK
Do đó: ΔAGM=ΔCKM
Suy ra: \(\widehat{AGM}=\widehat{CKM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AG//KC
c: Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC
BM là đường trung tuyến ứng với cạnh AC
AH cắt BM tại G
Do đó: G là trọng tâm của ΔBAC
Suy ra: \(BG=\dfrac{2}{3}BM\)
\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)
\(\Leftrightarrow BG=GK\)
hay G là trung điểm của BK
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a) 2 tâm giác vuông có 1 góc nhọn bằng nhau
b) QK=QA suy ra dpcm
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét tứ giác AGCK có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo GK
Do đó: AGCK là hình bình hành
Suy ra: AG//CK
Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của BC
Xét ΔBAC có
AH là đường trung tuyến ứng với cạnh BC
BM là đường trung tuyến ứng với cạnh AC
AH cắt BM tại G
Do đó: G là trọng tâm của ΔABC
Suy ra: \(BG=\dfrac{2}{3}BM\)
\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)
\(\Leftrightarrow GM+MK=GK=\dfrac{2}{3}BM\)
\(\Leftrightarrow BG=GK\)
hay G là trung điểm của BK