Tam giác ABC cân tại A . D thuộc AB , E thuộc AC , sao cho AD=AE

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

Có `Delta ABC` cân tại `A(GT)=>hat(B)=(180^0-hat(A))/2` (1)

`AD=AE=>Delta AED` cân tại `A=>hat(D_1)=(180^0-hat(A))/2` (2)

Từ `(1);(2)=>hat(B)=hat(D_1)`

mà `2` góc này ở vị trí đvị 

nên `DE////BC(đpcm)`

Xet ΔABC có AD/AC=AE/AB

nên DE//BC

10 tháng 6 2017

A B C D E 1 2 1

Qua B kẻ đường thẳng song song cới AD và cắt tia CA tại E.

Ta có: ^A1=^B1 (So le trong); ^A2=^E (Đồng vị). Mà ^A1=^A2 => ^B1=^E

=> \(\Delta\)BAE cân tại A => AE=AB=2

Sử dụng định lí Ta-lét: \(\frac{AD}{EB}=\frac{AC}{EC}\Rightarrow\frac{1,2}{EB}=\frac{3}{AC+AE}\Rightarrow\frac{1,2}{EB}=\frac{3}{3+2}\Rightarrow\frac{1,2}{EB}=\frac{3}{5}\)

\(\Rightarrow EB=1,2:\frac{2}{5}=\frac{1,2.5}{3}=\frac{6}{3}=2\)\(\Rightarrow AE=AB=EB=2\)

\(\Rightarrow\Delta\)BAE đều \(\Rightarrow\widehat{BAE}=60^0\). Mà ^BAE kề bù với ^BAC

\(\Rightarrow\widehat{BAC}=120^0\).

28 tháng 8 2021

Bài 1. Tham khảo thôi.

undefined

28 tháng 8 2021

Tham khảo câu trả lời bài 2undefined

11 tháng 10 2017

\(\widehat{A}=\widehat{B}=65\)                                      

11 tháng 10 2017

1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ                                                                                                        b) vì AD=AE --> tam giác ADE cân tại A.                                                                                                                                                              mà gốc A= 50 độ --> góc D = góc E= 65 độ .    --> góc D= Góc B ( vì cùng bằng 65 độ )  mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC                                                                                                                                                                             2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2)    và BD = AB - AD  (3) , EC= AC - AE (4)                                                               Từ (1) (2) (3) (4)  --> BD= EC                                                                                                                                                                       b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB                                                                                                  xét tam giác DBC và tan giác ECB có :                                                                                                                                                             +)  DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung                                                                                                            nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB                                                                 --> tam giác OBC cân tại O                                                                                                                                               chứng minh DE// BC như bài 1  --> ODE = OED --> tam giác ODE cân tại O                                                                                                         ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à )                                                                                                                3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ   mà ABC = 60 đôh ( gt)  --> ACB = 30 độ                                     ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ   makf ACB = 30 độ --> ACx = 60 độ  (1)                                              và AC = AE (gt)   (2) từ (1) và (2) --> tam giavc ACE là tam giác đều                                                                                                           b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ )                                                                                                               tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ                                                                 vì tam giác ACE là  tam giác đều -- EAC = 60 độ                                                                                                                                              ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng

9 tháng 9 2016

a)  ∆ABD và  ∆ACE có

AB = AC (gt)

A chung

\(\widehat{B_1}=\widehat{C_1}\left(=\frac{1}{2}\widehat{B}=\frac{1}{2}\widehat{C}\right)\)

Nên ∆ABD = ∆ACE (g.c.g)

Suy ra AD = AE

b) Vì BEDC là hình thang cân nên DE // BC.

Suy ra \(\widehat{D_1}=\widehat{B_2}\) (so le trong)

Lại có \(\widehat{B_2}=\widehat{B_1}\) nên \(\widehat{B_1}=\widehat{D_1}\)

Do đó tam giác EBD cân. Suy ra EB = ED.

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

9 tháng 9 2016

 ∆ABD và  ∆ACE có

AB = AC (gt)

 chung

 =  

-> ∆ABD = ∆ACE (g.c.g)

-> AD = AE

 Vì BEDC là hình thang cân nên DE // BC.

-> =  (so le trong)

Lại có  =  nên  = 

-> EBD cân

->EB = ED.

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN