Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔADH và ΔCDE có
Góc ADH = Góc EDC ( đối đỉnh )
D là tđ của HE => HD=ED
D là tđ của AC => AD=DC
=>ΔADH = ΔCDE (cgc)
=> góc DAH = góc ECD ( 2 góc tương ứng )
mà 2 góc trên ở vị trí so le trong
=>HA// EC
Xét ΔAHC có
F là tđ của AH => CF là trung tuyến
D là tđ của AC => HD là trung tuyến
mà CF giao vs HD tại Q => Q là trọng tâm
=> HQ=\(\dfrac{2}{3}\)HD
mà HD=DE (cmt)
=>HQ=\(\dfrac{HD+DE}{3}\)=\(\dfrac{1}{3}HE\)
thế là xong câu b rùi nhé còn còn a thì dễ r bạn tự làm đc
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)
c: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
Suy ra: AH//CE
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
A)TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN
=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
XÉT\(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{B}=\widehat{C}\left(GT\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(G-C-G\right)\)
B)
TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN
=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
C)VÌ\(\Delta ABH=\Delta ACH\left(CMT\right)\)
=>HB=HC (HAI CẠNH TƯƠNG ỨNG)
D)XÉT\(\Delta AEH\)VÀ\(\Delta AFH\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
D) XÉT TAM GIÁC LÀ ĐƯỢC
HB=HC
AH CẠNH CHUNG
AB=AC (CẠNH HUYỀN)
DO ĐÓ:AHB=AHC (C-C-C)
MÌNH LÀM ĐC NHIU ĐÓ CÒN NHIU BN TỰ LÀM NHÉ!!!
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O
chép mạng hả
https://qanda.ai/vi/solutions/QKXWWREQ7c-B%C3%A0i%2012%20Cho%20tam%20gi%C3%A1c%20ABC%20nh%E1%BB%8Dn%20v%C3%A0%20c%C3%A2n%20t%E1%BA%A1i%20A%20dx0%20%C4%91%C6%B0%E1%BB%9Dng%20ca0AH(HBC)
a, xét ΔAHB và ΔAHC có : AH chung
^BAH = ^CAH do AH là pg của ^BAC (Gt)
AB = AC do ΔABC cân tại A (gt)
=> ΔAHB = ΔAHC (c-g-c)
=> BH = CH (định nghĩa)
b, ΔAHB = ΔAHC (Câu a)
=> ^AHB = ^CHA (định nghĩa)
^AHB + ^AHC = 180 (kề bù)
=> ^AHB = 90