Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\forall n\in N;n\ne0\) Ta có : \(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n-1}{n\left(n+1\right)}=\frac{0}{\left(n+1\right)n}=0\)
\(\Rightarrow\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left[\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}\right]}\)
\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng ta được :
\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+.....+1+\frac{1}{1100}-\frac{1}{1101}\)
\(=1099+\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1100}\right)-\left(\frac{1}{3}+\frac{1}{4}+....+\frac{1}{1101}\right)\)
\(=1099+\frac{1}{2}-\frac{1}{1101}=\frac{2421097}{2202}\)
\(\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}.1-1}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}.1-1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
\(\sqrt{4+2\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}.1+1^2}\)
=\(\sqrt{\left(\sqrt{3}+1\right)^2}\)
=\(\sqrt{3}+1\)
Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :
Nhận xét : A > 0
Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)
\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)
\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)
Vậy A = 2
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(\frac{1}{\sqrt{2}+1}\)
\(=\frac{\sqrt{2}-1}{2-1}\)\(=-1+\sqrt{2}\)
Đơn giản là trục căn ở mẫu bằng cách nhân với liên hợp của nó thôi