Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{c}{a_1a_2}+\dfrac{c}{a_2a_3}+...+\dfrac{c}{a_na_{n+1}}\)
=\(\dfrac{c}{a_1}-\dfrac{c}{a_2}+\dfrac{c}{a_2}-\dfrac{c}{a_3}+.....+\dfrac{c}{a_n}-\dfrac{c}{a_{n+1}}\)
=\(\dfrac{c}{a_1}-\dfrac{c}{a_{n+1}}\)
Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)
\(\Leftrightarrow4+2a=2\left|2a+3\right|\)
đk a >= -2
\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a1-1}{9}=\dfrac{a2-2}{8}=\dfrac{a3-3}{7}=...=\dfrac{a9-9}{1}=\dfrac{a1-1+a2-2+a3-3+...+a9-9}{9+8+7+...+1}=\dfrac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+7+...+1}=\dfrac{\left(a1+a2+...+a9\right)-\left[9.\left(9+1\right):2\right]}{45}=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)\(\Rightarrow\dfrac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=9+1\Rightarrow a1=10\)
\(\dfrac{a2-2}{8}=1\Rightarrow a2-2=8\Rightarrow a2=8+2\Rightarrow a2=10\)
\(\dfrac{a3-3}{7}=1\Rightarrow a3-3=7\Rightarrow a3=7+3\Rightarrow a3=10\)
\(...\)
\(\dfrac{a9-9}{1}=1\Rightarrow a9-9=1\Rightarrow a9=1+9\Rightarrow a9=10\)
Vậy a1 = a2 = a3 = ... = a9
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100
Vì ta có VT = (a2 + a + 1) - (a2 + a - 1)
= a2 + a + 1 - a2 - a + 1
= 2 = VP
Vậy (a2 + a + 1) - (a2 + a - 1) = 2