Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số lần bắn được 8 là x
Số lần bắn được 6 là y (x,y\(\in\)N* )
Tổng số lần bắn là 100 . Ta có PT
25+42+x+15+y=100
\(\Leftrightarrow\)x+y=18 (1)
Điểm số trung bình là 8,69 nên ta có PT:
\(\dfrac{10.25+9.42+8x+7.15+6y}{100}=8,69\)
\(\Leftrightarrow\)4x+3y=68(2)
Từ (1) , (2) ta có hệ \(\left\{{}\begin{matrix}x+y=18\\4x+3y-68\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=4\end{matrix}\right.\)tmđk
Vậy số lần bắn được điểm 8 là 14 lần
Số lần bắn được điểm 6 là 4 lần
Vị trí tương đối của hai đường tròn (O ; R) và (O’ ; r) (R ≥ r) | Hệ thức giữa OO’ với R và r | Số điểm chung | |
---|---|---|---|
Hai đường tròn cắt nhau | R – r < OO’ < R + r | 2 | |
Hai đường tròn tiếp xúc nhau | - Tiếp xúc ngoài | OO’ = R + r | 1 |
- Tiếp xúc trong | OO’ = R – r > 0 | ||
Hai đường tròn không giao nhau | - (O) và (O’) ở ngoài nhau | OO’ > R + r | 0 |
- (O) đựng (O’) | OO’ < R - r |
Còn lại phần cuối 0 bên phải nhá Ly yêu?
A C D B F E G I H O H'
a) Nối 2 điểm O và I
Vì 3 điểm H, O, I cùng nằm trên đường tròn có đường kính OH
\(\Rightarrow\) \(\Delta HIO\) nội tiếp đường tròn đường kính OH (1)
Mà OH là cạnh của \(\Delta HIO\) đồng thời cũng là đường kính (2)
Từ (1), (2) \(\Rightarrow\Delta HIO\) vuông tại I
\(\Rightarrow OI\perp HI\)
\(\Rightarrow OI\) cũng vuông góc với dây CD (3)
\(\Rightarrow IC=ID\left(4\right)\)
Ta lại có: BE \(\perp CD\left(gt\right)\left(5\right)\)
Từ (3), (5) \(\Rightarrow OI\)// BE
\(\Rightarrow OI\)// BF (6)
Mà OA = OB = R (gt) (7)
Từ (6), (7) \(\Rightarrow IA=IF\left(8\right)\)
Từ (4), (8) \(\Rightarrow ADFC\) là hình bình hành (9)
b) Từ (9) \(\Rightarrow FC=AD\left(10\right)\)
Và FC // AD
\(\Rightarrow\) \(\widehat{ICF}=\widehat{IDA}\) (2 góc so le trong) (11)
Từ (10), (11) \(\Rightarrow\Delta EFC=\Delta GAD\) (cạnh huyền - góc nhọn)
\(\Rightarrow CE=DG\) (2 cạnh tương ứng)
c) Nối 2 điểm F và H'
Ta có: HA = HO (gt) (12)
Từ (8), (12) \(\Rightarrow HI\) là đường trung bình của \(\Delta OAF\)
\(\Rightarrow HI\)// OF
\(\Rightarrow CD\)// OF (13)
Từ (5), (13) \(\Rightarrow BE\perp OF\)
\(\Rightarrow\Delta OBF\) vuông tại F (14)
Mà HO = H'O (gt) (15)
Từ (12) \(\Rightarrow HA=HO=\dfrac{1}{2}OA\left(16\right)\)
Từ (15), (16) \(\Rightarrow H'O=\dfrac{1}{2}OA\left(17\right)\)
Từ (7), (17) \(\Rightarrow H'O=\dfrac{1}{2}OB\left(18\right)\)
Mà H'O + H'B = OB
\(\Leftrightarrow\dfrac{1}{2}OB+H'B=OB\)
\(\Leftrightarrow H'B=OB-\dfrac{1}{2}OB\)
\(\Leftrightarrow H'B=\dfrac{1}{2}OB\) (19)
Từ (18), (19) \(\Rightarrow H'O=H'B\) (20)
Từ (14) \(\Rightarrow OB\) là cạnh huyền
Từ (20) \(\Rightarrow\) H' là trung điểm cạnh huyền OB của tam giác vuông OBF
\(\Rightarrow H'\)là tâm của đường tròn ngoại tiếp tam giác vuông OBF
Rất chính xác luôn! Đinh Việt Hoàng