nhân tử bằng số  lũy thừa của x   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016
   nhân tử bằng số  lũy thừa của x   lũy thừa của (x-1)

        mẫu thức

  4x2-8x+4=4(x-1)

            4           (x-1)^2

        mẫu thức

     6x2-6x=6x(x-1)

            6            x             x-1

            MTC

       12x(x-1)2

            12

       BCNN(4,6)

             x           (x-1)^2
3 tháng 9 2018

8 - x3 đúng đó bạn

3 tháng 9 2018

cảm ơn bạn

7 tháng 11 2021

Dùng hằng đẳng thức số 1 : (a + b)với a = (2x -1) và b =(x+1)

(2x - 1) 2 + 2(2x-1) (x+1) + (x+1)2   = (2x -1 + x +1)=  (3x)2 = 9x2

8 tháng 9 2017

bn tính ra đc bt thức \(ax\left(x-y\right)+y^3\left(x+y\right)=ax^2-axy+xy^3+y^4\) 

Thay x=-1 và y=1 b=vào biểu thức vừa tính đc, ta có:

\(a\times\left(-1\right)^2-a\times\left(-1\right)1+\left(-1\right)\times1^3+1^4=2a\)

27 tháng 7 2016

Thay x = -1, y = 1 vào biểu thức, ta được

a ( -1 ) ( -1 - 1 ) + 13( -1 + 1 ) 

= - a ( - 2 ) + 10 = 2a.

Vậy đánh dấu x vào ô trống tương ứng với 2a.

27 tháng 7 2016

2a

20 tháng 6 2018

x=-10,y=2         gia tri cua bieu thuc la -1008

x=-1,y=0           gia tri cua bieu thuc la -1

x=2,y=-1           gia tri cua bieu thuc la 7

22 tháng 6 2018

bạn làm sai câu 3 rồi, đáp án phải lad 9 mới đúng 

Mong bạn thông cảm vì mk đã k nhầm ^_^!

4 tháng 9 2016

d . x - x^2 

9 tháng 9 2020

1. \(x^4+6x^3+11x^2+6x+1=0\)

\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)

\(\Leftrightarrow x^2+3x+1=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

10 tháng 9 2020

2. \(x^4+x^3-4x^2+x+1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)

+) ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

+) x2 + 3x + 1 = 0

<=> ( x + 3/2 )2 - 5/4 = 0

<=> ( x + 3/2 )2 = 5/4

<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)

 1.Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:   A. −1x+3−1x+3  B. 1x+31x+3  C. 1x1x  D. −1x−1x  2.Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:   A. 1a1a.  B. a+3ba(a−3b)a+3ba(a−3b).  C. −a+3ba(a−3b)−a+3ba(a−3b).  D. 1a−3b1a−3b.  3.Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết...
Đọc tiếp

 

1.

Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:

  

 A. −1x+3−1x+3 
 B. 1x+31x+3 
 C. 1x1x 
 D. −1x−1x 

 

2.

Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:

  

 A. 1a1a. 
 B. a+3ba(a−3b)a+3ba(a−3b). 
 C. −a+3ba(a−3b)−a+3ba(a−3b). 
 D. 1a−3b1a−3b. 

 

3.

Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết quả là:

  

 A. 12x+312x+3 
 B. x−23x+2x−23x+2 
 C. −13x+2−13x+2 
 D. 13x−213x−2 

 

4.

Giá trị của biểu thức P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)tại x = −34−34 là:

  

 A. 16451645. 
 B. −74−74. 
 C. −158−158. 
 D. 7474 

 

5.

Cho x+4x2−4−1x2+2x=Px+4x2−4−1x2+2x=P thì P bằng phân thức nào sau đây :

  

 A. x−1x(x−2)x−1x(x−2) 
 B. x2−3x−2x(x2−4)x2−3x−2x(x2−4) 
 C. x3+3x+2x(x2−4)x3+3x+2x(x2−4) 
 D. x+1x(x−2)x+1x(x−2) 

 

6.

Tổng hai phân thức 1−xx3−11−xx3−1và 1x2−x+11x2−x+1 bằng phân thức nào sau đây:

  

 A. 2(x−1)x3+12(x−1)x3+1. 
 B. 2−xx3+12−xx3+1. 
 C. 2+xx3+12+xx3+1. 
 D. 2x3+12x3+1 

 

7.

Giá trị của biểu thức P=4a2−3a+17a3−1+2a−1a2+a+1+61−aP=4a2−3a+17a3−1+2a−1a2+a+1+61−a tại a = −12−12 là:

  

 A. - 9 
 B. - 16 
 C. 16 
 D. 9 

 

8.

Tổng của các phân thức P: x2+2xy+4y2x2−9y2;x3y−x;y3y+xx2+2xy+4y2x2−9y2;x3y−x;y3y+xbằng phân thức nào sau đây:

  

 A. x2+y2x2−9y2x2+y2x2−9y2 
 B. y2x2−9y2y2x2−9y2 
 C. (x+y)2x2−9y2(x+y)2x2−9y2 
 D. 0 

 

9.

Tổng của các phân thức: x+2y2y2−xy,8xx2−4y2x+2y2y2−xy,8xx2−4y2và 2y−x2y2+xy2y−x2y2+xy là phân thức nào sau đây:

  

 A. 2(2x−y)x(2y+x)2(2x−y)x(2y+x) 
 B. 2(2y−x)y(2y+x)2(2y−x)y(2y+x). 
 C. 2y−xy(2y+x)2y−xy(2y+x). 
 D. 2(x−2y)y(2y+x)2(x−2y)y(2y+x). 

 

10.

Tổng của các phân thức ba2−b2,aa2+ab−2a−2bba2−b2,aa2+ab−2a−2b và 1a+b1a+b là:

  

 A. −2a2−2a+ab(a2−b2)(a−2)−2a2−2a+ab(a2−b2)(a−2). 
 B. 2a2−2a+ab(a2−b2)(2−a).2a2−2a+ab(a2−b2)(2−a). 
 C. 2a2+2a−ab(a2−b2)(a−2)2a2+2a−ab(a2−b2)(a−2) 
 D. 2a2−2a−ab(a2−b2)(a−2)2a2−2a−ab(a2−b2)(a−2). 
0