Ta có (x + 2)(x + 3)(x + 4)(x + 5) – 24 = ( x 2 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Ta có T = (x + 2)(x + 3)(x + 4)(x + 5) – 24

          = [(x + 2)(x + 5)].[(x + 3)(x + 4)] – 24

          = ( x 2 + 7x + 10).( x 2 + 7x + 12) – 24

Đặt x 2 + 7x + 11= t, ta được

T = (t – 1)(t + 1) – 24 = t 2 – 1 – 24 = t 2 – 25 = (t – 5)(t + 5)

Thay t = x 2 + 7x + 11, ta được

T = (t – 5)(t + 5) = ( x 2 + 7x + 11 – 5)( x 2 + 7x + 11 + 5)

= ( x 2 + 7x + 6)( x 2 + 7x + 16)

Suy ra a = 6; b = 16 => a – b = -10

 

Đáp án cần chọn là: D

29 tháng 1 2020

Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)

29 tháng 1 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)

\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)

\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

d) Xem lại đề

15 tháng 4 2019

A/  \(2\left(5x-3\right)=7x-18.\)

\(10x-6=7x-18\)

\(10-7x=6-18\)

\(3x=-12\)

\(x=-\frac{12}{3}=4\)

\(\Rightarrow S=\left\{4\right\}\)

B/  \(3x\left(x-2\right)+2x-4=0\)

\(3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\left(x-2\right)\left(3x+2\right)=0\)

\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)

\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)

C/  \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)

\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)

\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)

\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)

\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)

\(\Rightarrow2x^2-2x-12=3x+15\)

(chuyển vế r làm tiếp)

15 tháng 4 2019

Bài 1 : 

\(a,2\left(5x-3\right)=7x-18\)

\(\Leftrightarrow10x-6=7x-18\)

\(\Leftrightarrow10x-7x=6-18\)

\(\Leftrightarrow3x=-12\)

\(\Leftrightarrow x=-4\)

PT có nghiệm S = { -4 }

\(b,3x\left(x-2\right)+2x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x^2-4x-4=0\)

\(\Leftrightarrow3x^2-6x+2x-4=0\)

\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)

KL : ............

\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)

\(\Leftrightarrow4x+8-6x+18=3x+15\)

\(\Leftrightarrow4x-6x-3x=-8-18+15\)

\(\Leftrightarrow x=-9\)

KL : .......

18 tháng 8 2020

a) Ta có : \(A=\frac{3x+5}{x+4}=\frac{3x+12-7}{x+4}=\frac{3\left(x+4\right)-7}{x+4}=3-\frac{7}{x+4}\)

Vì \(3\inℤ\Rightarrow\frac{-7}{x+4}\inℤ\Rightarrow-7⋮x+4\Rightarrow x+4\inƯ\left(-7\right)\)

=> \(x+4\in\left\{1;-1;-7;7\right\}\Rightarrow x\in\left\{-3;-5;-11;7\right\}\)

b) Ta có B = \(\frac{10x^2-7x-5}{2x-3}=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)

\(=\frac{\left(5x+4\right)\left(2x-3\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)

Vì \(\hept{\begin{cases}5x\inℤ\\4\inℤ\end{cases}\Rightarrow\frac{7}{2x-3}\inℤ\Rightarrow7⋮2x-3\Rightarrow2x-3\inƯ\left(7\right)\Rightarrow2x-3\in\left\{1;7;-1;-7\right\}}\)

=> \(x\in\left\{2;5;1;-2\right\}\)

yx=10x=10y

M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}M=8x224xy16x240xy=8x(x3y)8x(2x5y)=x3y2x5y

=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}=10y3y2.10y5y=715
 

Câu 2

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

18 tháng 10 2020

Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)

=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0

=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)

=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca

=> a2 + b2 + c2 \(\le\)2(ab + bc + ca) 

Dấu "=" xảy ra <=> a + b + c = 0

18 tháng 10 2020

Xí bài 2 ý a) trước :>

4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0

<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào T ta được : 

\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)

\(T=0+1+1=2\)

11 tháng 7 2018

a) \(\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-\left(x-y\right)^3-2y^3\)

\(=x^3+3x^2y+3xy^2+y^3-\left(x^3-3x^2y+3xy^2-y^3\right)-2y^3\)

\(=x^3+3x^3y+3xy^3+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)

\(=6x^2y\)

b) \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+\left(b-c\right)^3+\left(c-b\right)^3\)

\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3ab^2-c^3+\left(c-d\right)^3\)

\(=a^3-3a^3b+3ab^2-b^3+b^3-3b^3c+3bc^2-c^3+c^3-3c^3b+3cb^3-b^3\)

\(=-b^3+3ab^2-3a^2b+a^3\)

11 tháng 7 2018

Mọi người giúp mk với nha, bữa trước mk đi chơi hè về nên bỏ qua bài này về lý thuyết nên chẳng hiểu gì cả, các bạn giúp mk giải và giảng cũng như chú thích các bước làm và ứng dụng hằng đẳng thức nào để giúp mk hiểu bài hơn và hoàn thành bài tập về nhà với nha, mk xin cảm ơn trước và nếu các bạn làm đúng thì mk sẽ k đúng và kết bạn với các bạn nha!

Hihihi!!!^_^ Mong các bạn giúp đỡ mk!!!!!!!!!!!!!!!

10 tháng 3 2020

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)

\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)

\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)

d> Ta có: \(\frac{-1}{x-2}\)( Theo a )

 Để phân thức là số nguyên <=> -1 chia hết cho x-2 => x-2 thuộc Ư(-1)=+-1

  *> X-2=1 => X=3 (TMĐK)

  *> X-2=-1 => X=1 (TMĐK)