K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Vì ABCD là hình bình hành nên AB // CD.

Tứ giác AMCN có AM // CN (vì AB // CD); AM = CN (giả thiết).

Suy ra, tứ giác AMCN là hình bình hành.

Do đó AN = CM (đpcm).

b) Vì tứ giác AMCN là hình bình hành suy ra \(\widehat {AMC} = \widehat {ANC}\) (đpcm).

13 tháng 3 2020

a/kẻ AC, vì BC//AD nên \(S_{ADN}=S_{ADC}\left(1\right)\)( chung đáy AD)

Vì AB//CD nên \(S_{ADC}=S_{DMC}\left(2\right)\)( chung đáy DC)

Từ (1) vfa (2) suy ra ĐPCM

b/Kẻ DH vuông góc AN tại H, DK vuông góc CM tại K

\(S_{ADN}=S_{DMC}\&AN=CM\Rightarrow DH=DK\)

Xét tgiac DHI và DKI đều vuông có: DH=DK, chung DI

Suy ra \(\Delta DHI=\Delta DKI\Rightarrow\widehat{AID}=\widehat{DIC}\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).

2 tháng 4 2019

Câu hỏi của Truong Tuan Dat - Toán lớp 8 - Học toán với OnlineMath

Em sai đề rồi nhé! Tham khảo đề bài và bài làm tại link này nhé em

4 tháng 4 2019

Cảm ơn ạ!