Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy luật là: số liền sau bằng số liền trước cộng với 4.
Viết ba số tiếp theo của dãy là: -3; 1; 5
Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$
Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$
Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....
Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$
Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$
Thật vậy:
$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$
$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$
Vậy ta có đpcm.
Quy luật: Dãy số cách đều, mỗi số cách nhau 2 đơn vị.
Ba số hạng tiếp theo của dãy là: - 12 ; - 10; - 8.
Tổng ba số hạng đó là: − 12 + − 10 + − 8 = − 30
25 = 32 = 1 (mod 31)
=> (25)400 = 1400 = 1 (mod 31)
=> 22000 = 1 (mod 31)
=> 22000.22 = 22 (mod 31)
=> 22002 = 4 (mod 31)
=> 22002 - 4 = 0 (mod 31)
Vậy...
thấy bạn tự ra đề tự làm mà