Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(a+b=3\Rightarrow a+(b-2)=1\Rightarrow b-2=1-a\)
Ta có:
\(f(x)=\frac{9^x}{9^x+3}\Rightarrow f(a)=\frac{9^a}{9^a+3}\) (1)
\(f(b-2)=f(1-a)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9^a\left(\frac{9}{9^a}+3\right)}\)
\(=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\) (2)
Từ (1),(2) suy ra \(f(a)+f(b-2)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=\frac{9^a+3}{9^a+3}=1\)
Đáp án A
\(\int\limits^5_3\dfrac{dx}{x^2-x}=\int\limits^5_3\dfrac{dx}{x\left(x-1\right)}=\int\limits^5_3\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)dx\)
\(=\left(ln\left(x-1\right)-lnx\right)|^5_3=ln4-ln5-\left(ln2-ln3\right)\)
\(=2ln2-ln5-ln2+ln3\)
\(=-ln5+ln3+ln2\)
\(\Rightarrow a=-1;b=1;c=1\)
Chọn C.
Dựa vào công thức diện tích mặt cầu và thể tích hình cầu, ta có: