K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2021

\(\sqrt{x}=0\)  đúng 

Vì 

\(\sqrt{x}\ge0\forall x\)

\(\sqrt{x}=0\)  là đúng

=> Vì căn của 0 = 0

30 tháng 4 2022

`\sqrt{5} - 2 > 0` ngược dấu với `x` `(x < 0)`

`=>` H/s nghịch biến khi `x < 0`

14 tháng 10 2020

đk: \(-\sqrt{5}\le x\le\sqrt{5}\)

*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)

Nếu M=5 thì \(M^2=25\)

Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)

Vậy Max M=5 khi x=2

*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)

Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)

14 tháng 10 2020

ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)

Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)

\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)

Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)

vậy maxM=5 khi x=2

Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)

Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)

24 tháng 11 2021

\(\sqrt{5}< \sqrt{9}=3\Leftrightarrow\sqrt{5}-3< 0\\ \Leftrightarrow\left|\sqrt{5}-3\right|=-\left(\sqrt{5}-3\right)=3-\sqrt{5}\left(đpcm\right)\)

24 tháng 11 2021

thank 

 

20 tháng 8 2016

2/ x+ 2x - 2x - 9√x + 14 = ( x- 2x + 1) + (2x - 2×2×9√x /4 + 81/16) + 127/16 = (x - 1)+ [ √(2x)  - 9/4]+ 127/16 > 0 với mọi x>= 1

Vậy phương trình vô nghiệm

20 tháng 8 2016

Bài rút gọn để rút gọn được tử với mẫu thì phải phân tích được ra nhân tử chung cho cả tử và mẫu mà ta thấy tử không thể phân tích thành nhân tử được do tử luôn >0. Mẫu và tử lại cùng bậc nữa nên mình đầu hàng không rút gọn được

27 tháng 5 2016

Ừ sửa lại thì ra kết quả là \(\sqrt{5\:\:\:}+1\)

Còn cách giải vẫn tương tự .

27 tháng 5 2016

ta có : \(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}-2\sqrt{\left(4-\sqrt{10+2\sqrt{5}}\right)\cdot\left(4+\sqrt{10+2\sqrt{5}}\right)}.\)

\(A^2=8-2\sqrt{16-10-2\sqrt{5}}\)

=> \(A^2=8-\sqrt{5-2\sqrt{5}\cdot1+1}\)

<=> \(A^2=8-\sqrt{\left(\sqrt{5}-1\right)^2}\)

              \(=8-\left(\sqrt{5}-1\right)\)

            \(=9-\sqrt{5}\)

=> \(A=\sqrt{9-\sqrt{5}}\)

2 tháng 11 2017

Đúng, vì √0,0001 = √0,012 = 0,01

13 tháng 5 2019

Sai, vì vế phải không có nghĩa.

(Lưu ý: √A có nghĩa khi A ≥ 0)