Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Bài 2:
\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)
\(\Leftrightarrow\sqrt{x+5}=7\)
=>x+5=25
hay x=18
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
\(A=\frac{-7x^2}{\sqrt{x-3}-2}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}\sqrt{x-3}-2\ne0\\x-3>0\end{cases}}\)
\(\sqrt{x-3}-2\ne0\Rightarrow\sqrt{x-3}\ne2\)
\(\Rightarrow x-3\ne4\Leftrightarrow x\ne7\)
\(x-3>0\Leftrightarrow x>3\)
Vậy điều kiện xác định của A là \(\hept{\begin{cases}x>3\\x\ne7\end{cases}}\)
ĐKXĐ:
\(\sqrt{x-3}\ge0\Rightarrow\sqrt{x-3}-2\ge-2\)
\(\Rightarrow x\ge3\)
Mà \(\sqrt{x-3}-2\ne0\) \(\Rightarrow x\ne7\)
Vậy \(x\ge3\) và \(x\ne7\)
ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)
<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)
\(\Leftrightarrow x\ge\frac{1}{2}\)