K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)

\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)

 \(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)

\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)

Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên

\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)

Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )

Với \(a=b=0\Rightarrow c=0\left(TM\right)\)

Vậy a=b=c=0 thỏa mãn đề bài

3 tháng 7 2018

mình mới học lớp 7 thôi

19 tháng 4 2020

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....

9 tháng 8 2020

Bài làm:

a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ

=> \(1+\sqrt{2}\) vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ

b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ

=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ

=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

4 tháng 9 2019

a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)

Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.

Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2

Kết quả trên chứng tỏ b chia hết cho 3.

Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √3 là số vô tỉ.

b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a

Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 5√2 là số vô tỉ.

* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:

3 + √2 = b

Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.

Điều này vô lí vì √2 là số vô tỉ.

Vậy 3 + √2 là số vô tỉ.

2 tháng 8 2017

Ta có:

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)

\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)

\(=\sqrt{1993}-\sqrt{2}\)

Vậy P là số vô tỉ

2 tháng 8 2017

sao lại biết \(\sqrt{1993}-\sqrt{2}\)là số vô tỉ

11 tháng 7 2023

Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)

\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ

Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)  

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)

Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)

Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ