Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\sqrt{\left(x-y\right)^2}=\left|x-y\right|\ge0\forall x;y\)
\(\sqrt{\left(y-2015\right)^2}=\left|y-2016\right|\ge0\forall y\)
\(\Rightarrow\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-2015\right)^2}=\left|x-y\right|+\left|y-2015\right|\ge0\forall x;y\)
Để \(\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-2005\right)^2}\le0\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|y-2005\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\x-2005=0\end{cases}\Rightarrow x=y=2005}\)
Vậy \(x=y=2005\)
Vì \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|\ge0\);|x+y+z|\(\ge\)0
=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)
\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2}\)
\(\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)
\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)
Vậy ............
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=0\\\sqrt{y+2}=0\\!x+y+z!=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\\z=0\end{cases}}\)
Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)
Vì \(\sqrt{\left(x+y\right)^2}=\left|x+y\right|\ge0\forall x;y\)
\(\sqrt{\left(y-2005\right)^2}=\left|y-2005\right|\ge0\forall y\)
\(\Rightarrow\sqrt{\left(x+y\right)^2}+\sqrt{\left(y-2005\right)^2}\ge0\forall x;y\)
Mà \(\sqrt{\left(x+y\right)^2}+\sqrt{\left(y-2005\right)^2}< 0\Rightarrow x;y\in\varphi\)
Vậy \(x;y\in\varphi\)