Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: (tất cả \(k\in Z\))
a. \(sinx-1\ge0\Leftrightarrow sinx\ge1\)
\(\Leftrightarrow sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b. \(\left\{{}\begin{matrix}\dfrac{1-sinx}{1+sinx}\ge0\left(luôn-đúng\right)\\1+sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow sinx\ne-1\)
\(\Leftrightarrow x\ne-\dfrac{\pi}{2}+k2\pi\)
c. \(sinx\ne0\Leftrightarrow x\ne k\pi\)
\(\sqrt{\frac{1+sinx}{1-sinx}}+\sqrt{\frac{1-sinx}{1+sinx}}=\sqrt{\frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}.cos\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}}+\sqrt{\frac{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}+2sin\frac{x}{2}.cos\frac{x}{2}}}\)
\(=\sqrt{\frac{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2}{\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}}+\sqrt{\frac{\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2}}=\frac{\left|sin\frac{x}{2}+cos\frac{x}{2}\right|}{\left|sin\frac{x}{2}-cos\frac{x}{2}\right|}+\frac{\left|sin\frac{x}{2}-cos\frac{x}{2}\right|}{\left|sin\frac{x}{2}+cos\frac{x}{2}\right|}\)
\(=\frac{\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\left(sin\frac{x}{2}-cos\frac{x}{2}\right)^2}{\left|sin^2\frac{x}{2}-cos^2\frac{x}{2}\right|}=\frac{2}{\left|cosx\right|}\)
Lời giải:
Ta có:
\(\frac{1+\sin x}{1-\sin x}+\frac{1-\sin x}{1+\sin x}=\frac{(1+\sin x)^2+(1-\sin x)^2}{(1-\sin x)(1+\sin x)}\)
\(=\frac{1+\sin ^2x+2\sin x+1-2\sin x+\sin ^2x}{1-\sin ^2x}\)
\(=\frac{2(1+\sin ^2x)}{\cos ^2x}=\frac{2(\sin ^2x+\cos ^2x+\sin ^2x)}{\cos ^2x}\)
\(=\frac{4\sin ^2x+2\cos ^2x}{\cos ^2x}=4(\frac{\sin x}{\cos x})^2+2=4\tan ^2x+2=2(1+2\tan ^2x)\)
Ta có đpcm.
\(\left\{{}\begin{matrix}x\in\left(0;\dfrac{\pi}{2}\right)\\sinx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\pi}{3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{\pi}{6}\Rightarrow cos\dfrac{x}{2}=cos\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)
Giả sử các biểu thức đã cho đều xác định
a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)
b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)
\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)
c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)
\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)
d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)
\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)
e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)
\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)
\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)
\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)
f/ Bạn ghi đề sai à?
C1: \(a.sinx+b.cosx=c\)
Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\)
Bạn áp dụng công thức trên sẽ tìm ra m
C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)
Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)
Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)
Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến
Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến
Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến
Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến
Đ/A: Ý D
(Toi nghĩ thế)
\(=\dfrac{1+sinx+1-sinx}{\sqrt{\left(1-sinx\right)\left(1+sinx\right)}}=\dfrac{2}{\sqrt{1-sin^2x}}=\dfrac{2}{\sqrt{cos^2x}}=\dfrac{2}{\left|cosx\right|}\)