\(\sqrt{7-4\sqrt{3}}\)  +  \(\sqrt{12+6\sqrt{3}}\)

rút...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2023

\(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{2^2-2.2.\sqrt{3}+\sqrt{3^2}}+\sqrt{3^2+2.3.\sqrt{3}+\sqrt{3^2}}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=2-\sqrt{3}+3+\sqrt{3}\)

\(=5\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

23 tháng 6 2019

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

28 tháng 10 2020

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)

\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)

\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)

1 tháng 10 2019

\(A=\frac{1}{\sqrt{11-2\sqrt{30}}}-\frac{3}{\sqrt{7-2\sqrt{10}}}+\frac{4}{\sqrt{8+4\sqrt{3}}}\)

\(=\frac{1}{\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}-\frac{3}{\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}}+\frac{2}{\sqrt{4+2\sqrt{3}}}\)

\(=\frac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\frac{3}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{2}{\sqrt{3}+1}\)

\(=\frac{6-5}{\sqrt{6}-\sqrt{5}}-\frac{5-2}{\sqrt{5}-\sqrt{2}}+\frac{3-1}{\sqrt{3}+1}\)

\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\sqrt{6}-\sqrt{5}}-\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}\)

\(=\sqrt{6}+\sqrt{5}-\sqrt{5}+\sqrt{2}+\sqrt{3}+1=\sqrt{6}+\sqrt{2}+\sqrt{3}+1\)

\(=\sqrt{2}\left(\sqrt{3}+1\right)+\sqrt{3}+1=\left(\sqrt{3}+1\right)\left(\sqrt{2}+1\right)\)

18 tháng 7 2020

Cảm ơn bạn

a) Ta có: \(\sqrt{3+2\sqrt{2}-\sqrt{3-2\sqrt{2}}}\)

\(=\sqrt{3+2\sqrt{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}}\)

\(=\sqrt{3+2\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\sqrt{3+2\sqrt{2}-\left|\sqrt{2}-1\right|}\)

\(=\sqrt{3+2\sqrt{2}-\left(\sqrt{2}-1\right)}\)

\(=\sqrt{3+2\sqrt{2}-\sqrt{2}+1}\)

\(=\sqrt{4+\sqrt{2}}\)

b) Ta có: \(\sqrt{7-4\sqrt{3}+\sqrt{12+6\sqrt{3}}}\)

\(=\sqrt{7-4\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{3}\cdot3}}\)

\(=\sqrt{7-4\sqrt{3}+\sqrt{\left(3+\sqrt{3}\right)^2}}\)

\(=\sqrt{7-4\sqrt{3}+\left|3+\sqrt{3}\right|}\)

\(=\sqrt{7-4\sqrt{3}+3+\sqrt{3}}\)

\(=\sqrt{10-3\sqrt{3}}\)

c) Ta có: \(\sqrt{5-2\sqrt{6}}+\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{5}\right|\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{5}\)

\(=\sqrt{3}+\sqrt{5}\)

d) Ta có: \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}-\sqrt{8}\)

\(=\frac{\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{2}+2}}{\sqrt{3}-1}-\sqrt{8}\)

\(=\frac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{3}-1}-\sqrt{8}\)

\(=\frac{\left|\sqrt{6}-\sqrt{2}\right|}{\sqrt{3}-1}-2\sqrt{2}\)

\(=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-2\sqrt{2}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-2\sqrt{2}\)

\(=2-2\sqrt{2}\)

1: \(=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)

2: \(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)