K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath

3 tháng 9 2019

\(DK:-\frac{1}{3}\le x\le6\)

\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)-\left(\sqrt{6-x}-1\text{ }\right)+\left(3x^2-15x\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\frac{3x+1-16}{\sqrt{3x+1}+4}-\frac{6-x-1}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{\sqrt{6-x}+1}+3x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\left(n\right)\\\frac{3}{\sqrt{3x+1}+4}+\frac{1}{\sqrt{6-x}+1}+3x+1=0\left(l\right)\end{cases}}\)

Vay nghiem cua PT la \(x=5\)

3 tháng 9 2019

Thx MaiLink

3 tháng 5 2017

\(Pt\Leftrightarrow\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)(ĐKXĐ: \(-\frac{1}{3}\le x\le6\))

\(\Leftrightarrow\frac{3x-15}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)

\(\Rightarrow x=5\)(tmđk)

18 tháng 5 2017

giải tiến bạc à bạn

12 tháng 10 2019

b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath

18 tháng 12 2017

\(-\dfrac{1}{3}\le x\le6\)

\(\sqrt{3x+1}-4-\left(\sqrt{6-x}-1\right)+3x^2-14x-5=0\)

\(\Leftrightarrow\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}}+\dfrac{1}{\sqrt{6-x}+1}+3x-1\right)=0\)

do \(x\ge\dfrac{-1}{3}\Rightarrow3x+1\ge0\)

\(\dfrac{3}{\sqrt{3x+1}}+\dfrac{1}{\sqrt{6-x}+1}+3x-1>0\)

\(\Rightarrow x=5\)

22 tháng 7 2018

tại sao lại như thế hả bạn ?

31 tháng 8 2019

\(\frac{-1}{3}\le x\le6\\ \sqrt[]{3x+1}-4-\left(\sqrt[]{6-x}-1\right)+3x^2-14x-5=0\\ \Leftrightarrow\frac{3x-15}{\sqrt[]{3x+1}+4}+\frac{x-5}{\sqrt[]{6-x+1}}+\left(x-5\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(x-5\right)\left(\frac{3}{\sqrt[]{3x+1}}+\frac{1}{\sqrt[]{6-x}+1}+3x-1\right)=0\)

do\(x\ge\frac{-1}{3}\Rightarrow3x+1\ge0\\ \frac{3}{\sqrt[]{3x+1}}+\frac{1}{\sqrt[]{6-x}+1}+3x-1>0\\ \Rightarrow x=5\)