K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$2020\equiv 1\pmod 3\Rightarrow 2020x^3\equiv x^3\pmod 3$

$2021\equiv -1\pmod 3\Rightarrow 2021x\equiv -x\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv x^3-x\pmod 3$
Mà $x^3-x=x(x^2-1)=x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x^3-x\equiv 0\pmod 3$

$\Rightarrow 2020x^3+2021x\equiv 0\pmod 3(*)$

Mặt khác:
$y^{2022}=(y^{1011})^2$ là scp nên $y^{2022}\equiv 0,1\pmod 3$

$2023\equiv 1\pmod 3$

$\Rightarrow y^{2022}+2023\equiv 1,2\pmod 3(**)$

Từ $(*); (**)\Rightarrow 2020x^3+2021x\neq y^{2022}+2023$ với mọi $x,y$ nguyên.

Do đó không tồn tại $x,y$ thỏa đề.

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Lời giải:

$2020\equiv 1\pmod 3\Rightarrow 2020x^3\equiv x^3\pmod 3$

$2021\equiv -1\pmod 3\Rightarrow 2021x\equiv -x\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv x^3-x\pmod 3$
Mà $x^3-x=x(x^2-1)=x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x^3-x\equiv 0\pmod 3$

$\Rightarrow 2020x^3+2021x\equiv 0\pmod 3(*)$

Mặt khác:
$y^{2022}=(y^{1011})^2$ là scp nên $y^{2022}\equiv 0,1\pmod 3$

$2023\equiv 1\pmod 3$

$\Rightarrow y^{2022}+2023\equiv 1,2\pmod 3(**)$

Từ $(*); (**)\Rightarrow 2020x^3+2021x\neq y^{2022}+2023$ với mọi $x,y$ nguyên.

Do đó không tồn tại $x,y$ thỏa đề.

11 tháng 6 2019

\(x^3+y^3+z^3=x+y+z+2011\)

\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2011\)

\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)=2011\)

ta sẽ chứng minh trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3

thật vậy:

gọi 3 số tự nhiên liên tiếp là: a,a+1,a+2 (a thuộc N)

a có 1 trong 3 dạng: 3k;3k+1;3k+2 ( k thuộc N)

+) a=3k => a chia hết cho 3

+) a=3k+1 => a+2=3k+3 chia hết cho 3

+) a=3k+2 => a+1=3k+3 chia hết cho 3 

nên: trong 3 số x-1;x;x+1 có 1 số chia hết cho 3; tương tự với 3 số y-1;y;y+1 và: z-1;z;z+1 cũng vậy nên: 

(x-1)x(x+1); (y-1)y(y+1); (z-1)z(z+1) đều chia hết cho 3 => (x-1)x(x+1)+(y-1)y(y+1)+(z-1)z(z+1)  chia hết cho 3

=> 2011 chia hết cho 3 (vô lí)

nên không tìm được x,y,z thỏa mãn

4 tháng 11 2016

Phím bấm trong này bạn chế lắm. Đăng hình thì t lại không biết. Nên bạn chờ người khác làm nha

4 tháng 11 2016

đù

ckế có ms dấu = tkui lm j căg v~

tkế bn có giải đc k ik nhờ ngkhác.

mik hs thanh lịch ko có nhu cầu