Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+8x=3^{2y}\Leftrightarrow\left(x+4\right)^2-3^{2y}=16\Leftrightarrow\left(x+4-3^y\right)\left(x+4+3^y\right)=16\)
Vì \(x+4+3^y>x+4-3^y\)nên
Ta xét bảng giá trị:
\(x+4-3^y\) | \(-16\) | \(-8\) | \(1\) | \(2\) |
\(x+4+3^y\) | \(-1\) | \(-2\) | \(16\) | \(8\) |
\(x\) | vn | \(-9\) | vn | \(1\) |
\(y\) | \(1\) | \(1\) |
Dễ thấy: x^ 2 + x + 1 > 0 nên x^ 3 < y^ 3 (a). Mặt khác: 5x^ 2 +11x + 7 > 0
=> y ^3 < 1 + x + x^ 2 + x^ 3 + (5x^ 2 + 11x + 7) = (x+2) ^3 (b)
Từ (a) và (b) suy ra: x^ 3 < y^ 3 < (x+2)^ 3 => y^ 3 = (x+1) 3 => y = x+1. Thay lại phương trình ta được: (x+1) ^3 = 1+x+x^2+x^3 => x = 0 và x = -1.
Vậy phương trình (1) có nghiệm là: (x; y) = (0; 1), (-1; 0).
Ta có x2+x+1>0 và 5x2+11x+7>0 với mọi x
Nên (1+x+x2+x3)-(x2+x+1)<1+x+x2+x3<(1+x+x2+x3)+(5x2+11x+7)
Do đó x3<y3<(x+2)3 => y3=(x+1)3
Từ đó suy ra x(x+1)=0
Vậy nghiệm nguyên của phương trình đã cho là: x=0 và y=1;x=-1 và y=0
<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)
Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4
1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x
=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)
2./ 5x2 >= 0 với mọi x
=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)
- Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)
- Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)
Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2
Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)2 = (2x2 + x + 1)2 = 4x4 + 4x3 + 5x2 + 2x + 1
Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4
=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.
Với x = -1 thì y = 1 hoặc -1
Với x = 3 thì y = 11 hoặc -11.
3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(\hept{\begin{cases}x-y=-m\\2x-y=m-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2m-3\\y=3m-3\end{cases}}\)
\(\Rightarrow\left(2m-3\right)^2-\left(3m-3\right)^2=8\)
Vô nghiệm