Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
3n + 1 chia hết cho 2n + 3
=> \(2\cdot\left(3n+1\right)=6n+2\)chia hết cho 2n + 3.
Mà : \(3\cdot\left(2n+3\right)=6n+9\)chia hết cho 2n + 3.
=> \(\left(6n+2\right)-\left(6n+9\right)\)chia hết cho 2n + 3.
=> \(-7\) chia hết cho 2n + 3
=> \(2n+3\in\left\{-7;-1;1;7\right\}\)
=> \(2n\in\left\{-10;-4;-2;4\right\}\)
=> \(n\in\left\{-5;-2;-1;2\right\}\)
3n + 1 chia hết cho 2n + 3
=> 2.(3n + 1) chia hết cho 2n + 3
=> 6n + 2 chia hết cho 2n + 3
=> [(6n + 2) - (2n + 3)] chia hết cho 2n + 3
=> 4n - 1 chia hết cho 2n + 3
=> 4n + 6 - 7 chia hết cho 2n + 3
=> 2.(2n + 3) - 7 chia hết cho 2n + 3
Mà 2.(2n + 3) chia hết cho 2n + 3
=> 7 chia hết cho 2n + 3
=> 2n + 3 thuộc Ư(7) = {-7; -1; 1; 7}
=> n thuộc {-5; -2; -1; 2}
Mà n là số tự nhiên
=> n = 2
Vậy có 1 số n thỏa.
3n+1 chia hết cho 2n+3
=>6n+2 chia hết cho 2n+3
=>3(2n+3)-7 chia hết cho 2n+3
Mà 3(2n+3) chia hết cho 2n+3
=>7 chia hết cho 2n+3
=>2n+3 thuộc Ư(7) Mà n thuộc N
=>2n+3 thuộc 1 và 7
=>2n thuộc -2 và 4
=>n thuộc -1 và 2
Vậy n thuộc -1 và 2
3n+1 chia hết cho 2n+3
=> 6n+2 chia hết cho 2n+3
=> 6n+9-7 chia hết cho 2n+3
Vì 6n+9 chia hết cho 2n+3
=> -7 chia hết cho 2n+3
=> 2n+3 thuộc Ư(-7)
2n+3 | n |
1 | -1 |
-1 | -2 |
7 | 2 |
-7 | -5 |
Mà n là số tự nhiên
=> n = 2
2n+1 chia hết cho n+2
=> 2n+4-3 chia hết cho n+2
Vì 2n+4 chia hết cho n+2
=> -3 chia hết cho n+2
=> n+2 thuộc Ư(-3)
=> n+2 thuộc {1; -1; 3; -3}
=> n thuộc {-1; -3; 1; -5}
2n+1=2n+4-3
=> 2n+1 chia hết cho n+2 khi 3 chia hết cho n+2
mà n là số tự nhiên nên n+2 lớn hơn hoặc bằng 2
=>n+2 =3
=>n=1
đây là toán lớp 6 nha bn
a mk chịu
b
vì 2n-3 : 2n+2
suy ra 2(2n-3) : 2n+2
4n-6: 2n+2
mà 2(2n+2):2n+2
4n+4 :2n+2
4n+ 4 -(4n-6) : 2n+2
.còn lại tự tính
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
Ta có :
\(10\le n\le99\)
\(\Rightarrow21\le2n+1\le201\)
\(\Rightarrow2n+1\) là số chính phương lẻ (1)
\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)
\(\Rightarrow dpcm\)
\(\Rightarrow n=40⋮40\Rightarrow dpcm\)