Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1x2x3x4x5x..x23+3
Vì 1x2x3x4x5x...x23 có chứa thừa số 5 , 10 , 15 , 20 suy ra tận cùng của tích sẽ là 0 . Vậy 1x2x3x...x23+3 sẽ có tận cùng bằng 3 ( vì 0+3=3) Mà tận cùng của các số chính phương phải là 0 , 1 , 4 , 8 , 6 vậy 23!+3 ko phải là số chính phương .
* 23! là 23 giai thừa tức là tích của các số từ 1 đến 23 nhé mong bạn hiểu , ko cần ghi vào bài đâu
a: \(A=4+2^2+2^3+...+2^{20}\)
=>\(2A=8+2^3+2^4+...+2^{21}\)
=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)
\(=2^{21}+8-2^2-4=2^{21}\)
=>\(A=2^{21}\) là lũy thừa của 2
b:
\(B=3+3^2+3^3+...+3^{100}\)
=>\(3B=3^2+3^3+...+3^{101}\)
=>\(2B=3^{101}-3\)
=>\(2B+3=3^{101}\) là lũy thừa của 3
a) 1 5 + 2 3 = 9 = 3 2 là số chính phương.
b) 2 5 + 5 2 = 57 không là số chính phương.
Giải :
a) 15 + 23 = 1 8 = 9 = 32 ( là số chính phương )
b) 25 + 52 = 32 + 25 = 57 ( không là số chính phương )
nếu \(A⋮b\) mà \(A⋮̸b^2\)\((A\) là số nguyên tố\()\)
\(\Rightarrow A\) không là số chính phương
tương tự vì A \(⋮5\) mà \(A⋮̸25\)
vây A ko phải là số chính phương
Ta thấy: \(A⋮3\) (Vì mọi hạng tử của A đều chia hết cho 3)
\(A⋮3^2\) vì tất cả hạng tử của A đêu chia hết cho 9 trừ số 3.
A chia hết cho 3 mà không chia hết cho 32 nên A không là số chính phương