Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
1) 45^10 . 5^30= (5.9)^10 . 5^30 = 5^10 . 5^30 . 9^10 = 5^40 . 3^20 = 25^20 . 3^20=75^20
2)\(\sqrt{40+2}=\sqrt{42}<\sqrt{49}=7=6+1=\sqrt{36}+\sqrt{1}<\sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}<\sqrt{40}+\sqrt{2}\)
3)\(Cho\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k;y=4k\)
Ta lại có:
\(xy=12\Rightarrow3k.4k=12\)
\(12.k^2=12\Rightarrow k^2=1\Rightarrow k=1:-1\)
\(Vơik=1\Rightarrow x=1.3=3;y=1.4=4\)
\(k=-1\Rightarrow x=-1.3=-3;y=-1.4=-4\)
( x - \(\sqrt{3}\) )\(^{2016}\) \(\ge\) 0 với mọi x . Kí hiệu là 1
(y\(^2\) - 3 )\(^{2018}\)\(\ge\) 0 với mọi y . Kí hiệu là 2
Từ 1 và 2 suy ra ( x - \(\sqrt{3}\) )\(^{2016}\) = 0 và (y\(^2\) - 3 )\(^{2018}\) = 0 . Kí hiệu là 3
Từ 3 suy ra x - \(\sqrt{3}\) = 0 suy ra x = \(\sqrt{3}\)
y\(^2\)- 3 = 0 suy ra y\(^2\) = 0 suy ra y =..........
2. Trên tử đặt 3 ra ngoài. Dưới mẫu đặt 11 ra ngoài rồi triệt tiêu.
3. 17^18 = (17^3)^6 = 4913^6
63^12 = (63^2)^6 = 3969 ^6
Vì 4913 > 3969 nên 4913^6 > 3969^6 hay 17^18>63^12
2) so sánh
Ta có \(\sqrt{17}\)>\(\sqrt{16}\)=4
\(\sqrt{26}\)>\(\sqrt{25}\)=5
=> \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
=>\(\sqrt{17}+\sqrt{25}+1>5+4+1=10\)
Mà \(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
mk giúp bạn được câu 2 thôi
Xin lỗi nhá
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}\)
Ta thấy: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{2015}}\)
.........................
\(\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}+\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}\)
=>\(A>2015.\frac{1}{\sqrt{2015}}=\frac{2015}{\sqrt{2015}}=\sqrt{2015}\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}>\sqrt{2015}\)