Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...............+\dfrac{2}{2009.2010.2011}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.........+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)
\(S=\dfrac{1}{2}-\dfrac{1}{4042110}\) \(< \dfrac{1}{2}\)
\(\Rightarrow S< Q\)
s=1/1*2-1/2*3+1/2*3-1/3*4+....+1/2009*2010-1/210*2011
=1/1*2-1/2010*2011
<1/1*2
\(S=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2009\cdot2010\cdot2011}\)
\(S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}-\frac{1}{2010\cdot2011}\)
\(S=\frac{1}{1\cdot2}-\frac{1}{2010\cdot2011}\)
\(S=\frac{1}{2}-\frac{1}{2010\cdot2011}< \frac{1}{2}\)
=> S < P
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)
\(\Rightarrow\) \(S< P\)
Vậy \(S< P\)
Câu 1:
Đặt S = 1.2+2.3+3.4+...+30.31
3 S = 1.2.3+2.3.3+3.4.3+...+30.31.3
3 S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ...+ 30.31.(32-29)
3S = 1.2.3 + 2.3.4-2.3 + 3.4.5-2.3.4 + ...+ 30.31.32-29.30.31
3S= 30.31.32
S= 30.31.32/3
1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100). 4
4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100
4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101
4S=98.99.100.101
Vậy S = 98.99.100.101/4 = 24497550
\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2009.2010.2011}\)
\(S=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2009.2010.2011}\right)\)
\(S=2.\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2009.2010}-\frac{1}{2010.2011}\right)\)
\(S=1.\left(\frac{1}{1.2}-\frac{1}{2010.2011}\right)\)
\(S=\frac{1}{1.2}-\frac{1}{2010.2011}\)
\(S=\frac{1}{2}-\frac{1}{2010.2011}< \frac{1}{2}\)
Vậy \(S< \frac{1}{2}\)
Chúc bạn học tốt !!!
Áp dụng công thức :
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)
Chúc bạn học tốt !!!