Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: \(\frac{-1}{5}< 0\), \(\frac{1}{1000}>0\)
\(\Rightarrow\frac{-1}{5}< \frac{1}{1000}\)
b) Ta có: \(\frac{267}{-268}=\frac{-267}{268}>-1\)
\(\frac{-1347}{1343}< -1\)
\(\Rightarrow\frac{-1347}{1343}< \frac{-267}{268}\)
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
\(-\frac{13}{15}+-\frac{2}{15}=-1;-\frac{14}{16}+-\frac{2}{16}\)
Vì \(-\frac{2}{15}< -\frac{2}{16}\Rightarrow\frac{-13}{15}< -\frac{14}{16}\)
2.Gọi 3 p/số đó là x;y;z
\(-\frac{5}{8}< x< y< z< -\frac{3}{5}\)
\(-\frac{100}{160}< x< y< z< -\frac{96}{160}\)
\(\Rightarrow x=-\frac{99}{160};y=-\frac{98}{160}=-\frac{49}{80};z=-\frac{97}{160}\)
a: -146/43<0
0<1/89
=>-146/43<1/89
b: 21/23<1
1<13/12
=>21/23<13/12