K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{10^{12345}+1}{10^{12346}+1}< \frac{10^{12345}+1+9}{10^{12346}+1+9}=\frac{10^{12345}+10}{10^{12346}+10}=\frac{10\left(10^{12344}+1\right)}{10\left(10^{12345}+1\right)}=\frac{10^{12344}+1}{10^{12345}+1}=B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

23 tháng 3 2018

Ta có : A = \(\frac{10^{12345}+1}{10^{12346}+1}< 1\)

=> A < \(\frac{10^{12345}+1+9}{10^{12346}+1+9}=\frac{10^{12345}+10}{10^{12346}+10}=\frac{10^{12344}+1}{10^{12345}+1}\)= B

Vậy A < B

2 tháng 5 2018

Vi 10^8/10^8-3  > 1 =>  10^8/10^8-3 >  10^8+2/10^8+2-3=10^8+2/10^8-1

=>10^8/10^8-3>10^8+2/10^8-1

cảm ơn nhé

30 tháng 4 2019

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Ta thấy :

\(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

\(\Rightarrow A< B\)

                        Vậy...

                                    #Louis

4 tháng 5 2016

Bài 2:1-2+3-4+...+2011-2012

=1+2+3+4+...+2011+2012-2(2+4+6+...+2012)

=2025078-2(1012036)

=2025078-2024072

=1006

Học giỏi!

2 tháng 5 2015

A-B= 20^10+1/20^10-1-20^10+1/20^10+3 =2/20^10+2>0 
A-B>0 => A>B. 
 

2 tháng 5 2015

Có cách 2 nữa nhá: 

A= (2010+1) / (2010-1) = 1 + (2/ (2010-1))>1 
B= (2010-1)/ (2010-3) =1- (2/(2010-3))<1 
Từ đó → A>B 

23 tháng 2 2017

a) Ta có: \(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)

\(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

Vậy A > B

b) Ta có: \(\frac{1}{10}C=\frac{10^{1992}+1}{10^{1992}+10}=1+\frac{10^{1992}+1}{9}\)

\(\frac{1}{10}D=\frac{10^{1993}+1}{10^{1993}+10}=1+\frac{10^{1993}+1}{9}\)

\(\frac{10^{1992}+1}{9}< \frac{10^{1993}+1}{9}\Rightarrow1+\frac{10^{1992}+1}{9}< 1+\frac{10^{1993}+1}{9}\)

\(\Rightarrow\frac{1}{10}C< \frac{1}{10}D\)

\(\Rightarrow C< D\)

Vậy C < D

24 tháng 7 2020

a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)

Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)

Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=> 10A > 10B 

=> A > B

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\) 

=> A < B

24 tháng 7 2020

Cảm ơn bạn rất nhiều nha