K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{10^{12345}+1}{10^{12346}+1}< \frac{10^{12345}+1+9}{10^{12346}+1+9}=\frac{10^{12345}+10}{10^{12346}+10}=\frac{10\left(10^{12344}+1\right)}{10\left(10^{12345}+1\right)}=\frac{10^{12344}+1}{10^{12345}+1}=B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

23 tháng 3 2018

Ta có : A = \(\frac{10^{12345}+1}{10^{12346}+1}< 1\)

=> A < \(\frac{10^{12345}+1+9}{10^{12346}+1+9}=\frac{10^{12345}+10}{10^{12346}+10}=\frac{10^{12344}+1}{10^{12345}+1}\)= B

Vậy A < B

2 tháng 5 2018

Vi 10^8/10^8-3  > 1 =>  10^8/10^8-3 >  10^8+2/10^8+2-3=10^8+2/10^8-1

=>10^8/10^8-3>10^8+2/10^8-1

cảm ơn nhé

30 tháng 4 2019

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Ta thấy :

\(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

\(\Rightarrow A< B\)

                        Vậy...

                                    #Louis

4 tháng 5 2016

Bài 2:1-2+3-4+...+2011-2012

=1+2+3+4+...+2011+2012-2(2+4+6+...+2012)

=2025078-2(1012036)

=2025078-2024072

=1006

Học giỏi!

2 tháng 5 2015

A-B= 20^10+1/20^10-1-20^10+1/20^10+3 =2/20^10+2>0 
A-B>0 => A>B. 
 

2 tháng 5 2015

Có cách 2 nữa nhá: 

A= (2010+1) / (2010-1) = 1 + (2/ (2010-1))>1 
B= (2010-1)/ (2010-3) =1- (2/(2010-3))<1 
Từ đó → A>B 

29 tháng 8 2015

 123456789x[19784.(10-10).123452223] 

= 123456789x[19784.0.123452223 ] 

= 123456789x0

= 0

=>  123456789x[19784.(10-10).123452223] < 1

29 tháng 8 2015

SS: 123456789x[19784.(10-10).123452223] và 1

30 tháng 8 2016

giải thích nữa

 

 

So sánh :

A = 12347 . 12345

B = 12346 . 12346

A=B

Vì A= 152 423 715

B= 152 423 715

 

 

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

a) \(\frac{{ - 21}}{{10}}\) < 0

b) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\). Vậy \(\frac{{ - 5}}{{ - 2}} > 0\).

c) \(\frac{{ - 5}}{{ - 2}} = \frac{5}{2} > 0\), mà \(\frac{{ - 21}}{{10}} < 0\)

Vậy \(\frac{{ - 5}}{{ - 2}} > \frac{{ - 21}}{{10}}\).

a: \(-\dfrac{21}{10}< 0\)

b: \(0< -\dfrac{5}{-2}\)

c: \(-\dfrac{21}{10}< 0< \dfrac{-5}{-2}\)