Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
c) \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{5\left(0,123-0,1+\frac{1}{11}+\frac{1}{12}\right)}=\frac{3}{5}\)
a) 63
36 = 32.3 = ( 32)3 = 93
Do 6 < 9 nên 63 < 93 hay 63 < 36
^^
a) ( 0,5 )6 = \(\frac{5^6}{10^6}=\left(\frac{5}{10}\right)^6=\left(\frac{1}{2}\right)^6\)
( 0,5 )9 = \(\frac{5^9}{10^9}=\left(\frac{5}{10}\right)^9=\left(\frac{1}{2}\right)^9\)
vì \(\left(\frac{1}{2}\right)^6>\left(\frac{1}{2}\right)^9\)nên \(\left(0,5\right)^6>\left(0,5\right)^9\)
b) vì ( -0,125)8 = ( 0,125 )8 = ( 0,5 )24
=> ( -0,125 )8 = ( 0,5 )24
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
a, \(\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^{10}}{\left(20.5\right)^5}=\dfrac{20^5.5^{10}}{20^5.5^5}=5^5\)
b,\(\dfrac{\left(0,9\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3.3\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3\right)^5.3^5}{\left(0,3\right)^6}=\dfrac{3^5}{\left(0,3\right)}\)
a. \(\frac{20^5.5^{10}}{100^5}\)
\(=\frac{20^5.\left(5^2\right)^5}{100^5}\)
\(=\frac{20^5.25^5}{100^5}\)
\(=\frac{500^5}{100^5}\)
\(=\left(\frac{500}{100}\right)^5\)
\(=5^5=3125\)
b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)
\(=\frac{\left(0,9\right)^5}{\left(0,3\right)^5.0,3}\)
\(=\left(\frac{0,9}{0,3}\right)^5.\frac{1}{0,3}\)
\(=3^5.\frac{1}{0,3}\)
\(=810\)
c. \(\frac{6^3+3.6^2+3^3}{-13}\)
\(=\frac{\left(3.2\right)^3+3.\left(3.2\right)^2+3^3}{-13}\)
\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\frac{3^3.13}{-13}\)
\(=\left(-3\right)^3\)
\(=-27\)
a: \(=\left\{\left[\left(20-\dfrac{1}{4}\right)\cdot0.2\right]+\dfrac{3}{20}\right\}\cdot5:\left[\left(2+\dfrac{25}{11}\cdot\dfrac{22}{100}\cdot10\right)\cdot\dfrac{1}{33}\right]\)
\(=\left\{\left[\dfrac{79}{20}+\dfrac{3}{20}\right]\right\}\cdot5:\left[\dfrac{356}{55}\cdot\dfrac{1}{33}\right]\)
\(=\dfrac{82}{20}\cdot5:\dfrac{3856}{1815}\simeq104,516\)
b: \(=\dfrac{13}{30}+\dfrac{28}{45}\cdot\dfrac{5}{2}\cdot\left[\dfrac{5}{6}:\dfrac{53}{90}\right]\cdot\dfrac{53}{50}\)
\(=\dfrac{13}{30}+\dfrac{14}{9}\cdot\dfrac{3}{2}=\dfrac{83}{30}\)
a/ 312 và 58
312=(33)4=274 58=(52)4=254
vậy 312 > 58