\(\frac{116}{339}+\frac{261}{1530}+\frac{121}{445}\)

B=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

A=\(\frac{113}{139}+\frac{3}{139}+\frac{29}{170}+\frac{121}{445}\)=\(\frac{1}{3}+\frac{1}{133}+\frac{87}{510}+\frac{121}{445}=\frac{1}{3}+\frac{1}{133}+\frac{2}{510}+\frac{85}{510}+\frac{121}{445}\)

=\(\frac{1}{3}+\frac{1}{113}+\frac{1}{255}+\frac{121}{445}+\frac{1}{6}=\frac{1}{113}+\frac{1}{255}+\frac{121}{445}+\frac{1}{2}\)

B=\(\frac{1}{255}+\frac{1}{113}+\frac{242}{890}+\frac{445}{890}=\frac{1}{255}+\frac{1}{113}+\frac{121}{445}+\frac{1}{2}\)

Vậy A=B

15 tháng 2 2022

ko bt nàm

9 tháng 4 2017

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)A=54-53/53+54=1/107=2/214

B=135-133/134+135=2/169

tự so sánh tiếp

 

2 tháng 5 2017

Đm giải nốt câu b đi bạn

4 tháng 5 2016

Bài 2:1-2+3-4+...+2011-2012

=1+2+3+4+...+2011+2012-2(2+4+6+...+2012)

=2025078-2(1012036)

=2025078-2024072

=1006

Học giỏi!

23 tháng 4 2017

a > b mình chưa chắc chắn

23 tháng 4 2017

Vì B là phân số bé hơn 1 nên cộng cùng một số vào tử và mẫu của phân số đó thì giá trị của B sẽ tăng thêm, ta có:

\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)

Vậy B < A

25 tháng 4 2017

dài thế bị rảnh à

25 tháng 4 2017

type nhanh mà bạn

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

2 tháng 5 2018

Vi 10^8/10^8-3  > 1 =>  10^8/10^8-3 >  10^8+2/10^8+2-3=10^8+2/10^8-1

=>10^8/10^8-3>10^8+2/10^8-1

cảm ơn nhé

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B