K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Đặt A= \(\frac{7^{2015}+1}{7^{2017}+1}\) 

B= \(\frac{7^{2017}+1}{7^{2019}+1}\)

Ta có  A= \(\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}\)

           = \(\frac{7^{2017}+49}{7^{2019}+49}\)

         = \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)

Vì \(\frac{7^{2017}+1+48}{7^{2019}+1+48}\)>\(\frac{7^{2017}+1}{7^{2019}+1}\)

=> A>B

K MK NHA !        

11 tháng 3 2018

Bạn tham khảo nhé 
Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{7^{2017}+1}{7^{2019}+1}< \frac{7^{2017}+1+48}{7^{2019}+1+48}=\frac{7^{2017}+49}{7^{2019}+49}=\frac{7^2\left(7^{2015}+1\right)}{7^2\left(7^{2017}+1\right)}=\frac{7^{2015}+1}{7^{2017}+1}=B\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~

26 tháng 3 2017

\(TA-CO':\)

\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)

\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(A=\frac{4}{7}\)

\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)

ĐẶT \(C=1+2+...+2^{2013}\)

\(\Rightarrow2C=2+2^2+...+2^{2014}\)

\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)

\(\Rightarrow C=2^{2014}-2\)

\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)

\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)

\(B=\frac{1}{2}\)

\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)

\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)

VẬY, \(A-B=\frac{-1}{14}\)

25 tháng 6 2016

\(2.\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{2013}+\frac{1}{2015}+\frac{1}{2017}\right)\)

\(=2.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(=2.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2017}+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(=2.\left(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}\right)-1\)

31 tháng 1 2020

\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)

Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1  

= [(2015 - 1) : 2 + 1].(2015 + 1) : 2

= 1008.2016 : 2 = 1016064

Lại có :  2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng

= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)

= 2 + 2 + ... + 2 + 2 (504 số hạng 2)

= 2 x 504 = 1008 

Khi đó A = \(\frac{1016064}{1008}=1008\)

b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)

=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)

\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)

Khi đó : B/100 = 1/2

=> B = 50 

Vậy B = 50

6 tháng 2 2020

giỏi ghê vậy Hân

2 tháng 2 2018

i don't care

17 tháng 3 2018

Đặt A= 2015^2013+1/2015^2014+7, B=2015^2014-2/2015^2015-2

2015A= 2015^2014+2015/2015^2014+7= 1 + (2008/2015^2014+7)

2015B= 2015^2015-4030/2015^2015-2= 1 - (4028/2015^2015-2)

Do 2015A>1>2015B nên A>B