Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a = ( 2000 + 2 ) x 2002
a = 2002 x 2002 + 2 x 2002
b = 2000 x ( 2002 + 2 )
b = 2000 x 2002 + 2 x 2000
Ta có vì : 2000 x 2002 = 2000 x 2002
vậy ta so sánh : 2 x 2002 và 2 x 2000
Vì 2 x 2002 > 2 x 2000
=> a > b
a = ( 2000 + 2 )²
b = 2000 x ( 2000 + 4 )
=> a > b
Vì a = ( 2000 + 2 )² = 4008004
b = 2000 x ( 2000 + 4 ) = 4008000
a = 2002 . 2002
a = (2000 + 2) . 2002
a = 2000.2002 + 2.2002
b = 2000 . 2004
b = 2000 . (2002 + 2)
b = 2000.2002 + 2.2000
Vì 2002 > 2000
=> 2.2002 > 2.2000
=> 2000.2002 + 2.2002 > 2000.2002 + 2.2000
=> a > b
\(a=2004.2004=2004.\left(2002+2\right)=2004.2002+2004.2\)
\(b=2002.2006=2002.\left(2004+2\right)=2002.2004+2002.2\)
Vì \(2004.2>2002.2\)
=>\(2004.2002+2004.2>2004.2+2002.2\)
=>\(a>b\)
A = 2004 x 2004 và B = 2002 x 2006
A = [ 2002 + 2 ] x 2004 = 2002 x 2004 + 2 x 2004
B = 2002 x [ 2004 + 2 ] = 2002 x 2004 + 2 x 2002
Suy ra A > B
a = 2002 . 2002 = 2002 . (2000 + 2) = 2002 . 2000 + 2002 . 2
b = 2000 . 2004 = 2000 . (2002 + 2) = 2000 . 2002 + 2000 . 2
Do: 2002 . 2 > 2000 . 2 => 2002 . 2000 + 2002 . 2 > 2000 . 2002 + 2000 . 2
=> 2002 . 2002 > 2000 . 2004 => a > b
2000/2001 * 2002/2003 * 2001/2002 * 2003/2004*2006/2000
=((2000/2001).2002):2003.2001/2002).2003):2004.2006)/2000
=1.000998004
\(\dfrac{2000}{2001}\cdot\dfrac{2002}{2003}\cdot\dfrac{2001}{2002}\cdot\dfrac{2003}{2004}\cdot\dfrac{2006}{2000}=\dfrac{2006}{2004}=\dfrac{1003}{1002}\)
Ta có:
B=\(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Do \(\frac{2000}{2001}>\frac{2000}{2001+2002};\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có:$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:$\frac{2000}{2001}>\frac{2000}{2001+2002}$20002001 >20002001+2002
$\frac{2001}{2002}>\frac{2001}{2001+2002}$20012002 >20012001+2002
$\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)$⇒(20002001 +20012002 )>(20002001−2002 −20012001+2001 )
$\Rightarrow A>B$⇒A>B
a)
A = 2002 x 2002
A = ( 2000 + 2 ) x 2002
A = 2000 x 2002 + 2 x 2002
b)
B = 2000 x 2004
B = 2000 x ( 2002 + 2 )
B = 2000 x 2002 + 2 x 2000
Vậy A > B
ta có 2002*2002=(2000+2)*2002=2000*2002+2002*2=2000*2002+4004
2000*2004= 2000*(2002+2)=2000*2002+2000*2=2000*2002+4000
vì 4004>4000
=>a>b