Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)
\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
mà \(-2\sqrt{105}>-2\sqrt{120}\)
nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)
\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)
mà \(4< 6\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)
a, \(\sqrt{2}+\sqrt{11}< \sqrt{3}+\sqrt{25}=\sqrt{3}+5.\)
b, \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
a) Ta có: 1,(81) = 1,8181…
Vì 1,8181… > 1,812 nên -1,8181… < -1,812 hay -1,(81) < -1,812
b) Ta có: \(2\frac{1}{7}\) = 2,142857….
Vì 2,142857….> 2,142 nên \(2\frac{1}{7}\) > 2,142
c) Vì 48,075… < 48,275… nên - 48,075…. > – 48,275…
d) Vì 5 < 8 nên \(\sqrt 5 \) < \(\sqrt 8 \)
a: -1,(81)>-1,812
b: 2+1/7>2,142
c: -48,075...>-48,275...
d: \(\sqrt{5}< \sqrt{8}\)
a) Ta có: 1,(32) = 1,323232….
Quan sát chữ số ở hàng thập phân thứ 2, ta thấy 1 < 2 nên 1,313233… < 1,(32)
b) Ta có: \(\sqrt 5 = 2,236 \ldots .\)
Quan sát chữ số ở hàng thập phân thứ nhất, ta thấy 2 < 3 nên 2,236 < 2,36
Vậy \(\sqrt 5 \) < 2,36
a)\(2,4 =\frac{24}{10}=\frac{{12}}{5}\) và \(2\frac{3}{5} = \frac{{13}}{5}\)
Ta có: \(\frac{{12}}{5} < \frac{{13}}{5} \Rightarrow 2,4 < 2\frac{3}{5}\).
b) \( - 0,12 = -\frac{12}{100}= - \frac{3}{{25}}\) và \( - \frac{2}{5} = - \frac{{10}}{{25}}\)
Ta có: -3 > -10 nên \( - \frac{3}{{25}} > - \frac{{10}}{{25}}\) nên \( - 0,12 > - \frac{2}{5}\).
c)\(\frac{{ - 2}}{7} = \frac{{ - 20}}{{70}}\) và \( - 0,3 = \frac{{ - 3}}{{10}} = \frac{{ - 21}}{{70}}\).
Do -20 > -21 nên \(\frac{{ - 20}}{{70}} > \frac{{ - 21}}{{70}}\) nên \(\frac{{ - 2}}{7} > - 0,3.\)
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
a) 4,9(18) = 4,91818…< 4,928… (vì chữ số hàng phần trăm của 4,91818 là 1 nhỏ hơn chữ số hàng phần trăm của 4,928 là 2)
Vậy 4,9(18) < 4,928
b) Vì 4,315 < 4,318… nên -4,315 > -4,318…
c) Vì 3 < \(\frac{7}{2}\) nên \(\sqrt 3 \) < \(\sqrt {\frac{7}{2}} \)
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)