Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1
2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A
=> A > B
Tk mk nha
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B
Vậy A > B
Chắc sai =))
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)
\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)
\(\Rightarrow A< B\)
a, Ta có: \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\)
\(\Rightarrow\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)
b, \(A=\frac{2003.2004-1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(B=\frac{2004.2005-1}{2004.2005}=1-\frac{1}{2004.2005}\)
Ta có: \(2003.2004< 2004.2005\)
\(\Rightarrow\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
\(\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
\(\Rightarrow A< B\)
a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)
\(1-\frac{2003}{2004}=\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)
b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)
\(\frac{-2002}{2003}
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath