Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
\(\left(\frac{1}{243}\right)^9=\frac{1}{243^9}=\frac{1}{\left(3^5\right)^9}=\frac{1}{3^{45}}\)
\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\frac{1}{81^{13}}=\frac{1}{\left(3^4\right)^{13}}=\frac{1}{3^{52}}\)
Có \(3^{45}< 3^{52}\Rightarrow\frac{1}{3^{45}}>\frac{1}{3^{52}}\)
suy ra \(\left(\frac{1}{243}\right)^9>\left(\frac{1}{83}\right)^{13}\).
a)3^x+1=9^x
3^x+1=3.3^x
3^x+1=3^x+1
=>x thuộc TH Z
b)2^3.x+2=4^x+5
2^3x+2=2^2.(x+5)
2^3x+2=2^2x+10
2^3x=2^2x+8
3x-2x=8
=>x=8
c)3^2x-1=243
3^2x=243.3
3^2x=729
3^2x=3^6
=>2x=6
x=6:2=3
chúc bạn học tốt nha
a) \(11^9+12^9+13^9+14^9+15^9+16^9\)
\(=11^{4.2}.11+12^{4.2}.12+13^{4.2}.13+14^{4.2}.14+15^9+16^9\)
\(=...1.11+...6.12+...1.13+...6.14+...5+...6\)
\(=...1+...2+...3+...4+...5+...6\)
\(=...1\)
Vậy biểu thức trên có chũ số tận cùng là 1
b) \(25^7+26^7+27^7+28^7+29^7+29^7+30^7+31^7\)
\(=...5+...6+27^4.27^3+28^4.28^3+29^4.29^3+29^4.29^3+...0+...1\)
\(=...5+...6+...3+...8+...9+...9+...0+...1\)
\(=...1\)
Vậy biểu thức trên có chữ số tận cùng là 1
a,312 và 58
Ta có:312=(33)4=274
58=(52)4=254
Vì 274>254 nên 312>58
b,(0,6)9 và (0,9)6
Ta có:(0,9)6>(0,6)6 mà (0,6)6>(0,6)9
\(\Rightarrow\)(0,6)9<(0,9)6
c,52000 và 101000
Ta có:52000=(52)1000=251000>101000
\(\Rightarrow\)52000>101000
d,?????
Ta có :
\(\frac{1}{243^9}=\frac{1}{\left(81.3\right)^9}=\frac{1}{81^9.27^3}>\frac{1}{81^9.81^3}=\frac{1}{81^{11}}>\frac{1}{8^{12}}>\frac{1}{8^{13}}\)
\(\Rightarrow\frac{1}{243^9}>\frac{1}{8^{13}}\)